

AsiaBSDCon 2014
Proceedings

March 13-16, 2014
Tokyo, Japan

Copyright c© 2014 BSD Research. All rights reserved.
Unauthorized republication is prohibited.

Published in Japan, March 2014

INDEX

P1A: Bold, fast optimizing linker for BSD —
Luba Tang

P1B: Visualizing Unix: Graphing bhyve, ZFS and PF with Graphite 007
Michael Dexter

P2A: LLVM in the FreeBSD Toolchain 013
David Chisnall

P2B: NPF - progress and perspective 021
Mindaugas Rasiukevicius

K1: OpenZFS: a Community of Open Source ZFS Developers 027
Matthew Ahrens

K2: Bambi Meets Godzilla: They Elope 033
Eric Allman

P3A: Snapshots, Replication, and Boot-Environments—How new ZFS utilities
are changing FreeBSD & PC-BSD 045
Kris Moore

P3B: Netmap as a core networking technology 055
Luigi Rizzo, Giuseppe Lettieri, and Michio Honda

P4A: ZFS for the Masses: Management Tools Provided by the PC-BSD and
FreeNAS Projects 065
Dru Lavigne

P4B: OpenBGPD turns 10 years - Design, Implementation, Lessons learned 077
Henning Brauer

P5A: Introduction to FreeNAS development 083
John Hixson

P5B: VXLAN and Cloud-based networking with OpenBSD 091
Reyk Floeter

INDEX

P6A: Nested Paging in bhyve 097
Neel Natu and Peter Grehan

P6B: Developing CPE Routers based on NetBSD: Fifteen Years of SEIL 107
Masanobu SAITOH and Hiroki SUENAGA

P7A: Deploying FreeBSD systems with Foreman and mfsBSD 115
Martin Matuška

P7B: Implementation and Modification for CPE Routers:
Filter Rule Optimization, IPsec Interface and Ethernet Switch 119
Masanobu SAITOH and Hiroki SUENAGA

K3: Modifying the FreeBSD kernel Netflix streaming servers —
Scott Long

K4: An Overview of Security in the FreeBSD Kernel 131
Dr. Marshall Kirk McKusick

P8A: Transparent Superpages for FreeBSD on ARM 151
Zbigniew Bodek

P8B: Carve your NetBSD 165
Pierre Pronchery and Guillaume Lasmayous

P9A: How FreeBSD Boots: a soft-core MIPS perspective 179
Brooks Davis, Robert Norton, Jonathan Woodruff, and Robert N. M. Watson

P9B: Adapting OSX to the enterprise 187
Jos Jansen

P10A: Analysis of BSD Associate Exam Results 199
Jim Brown

Visualizing Unix: Graphing bhyve, ZFS and PF with Graphite

Michael Dexter <editor@callfortesting.org>
AsiaBSDCon 2014, Tokyo, Japan

"Silence is golden", or so goes the classic Unix tenet and the result is that a traditional Unix system
provides us only a command prompt while performing its most demanding tasks. While this is
perfectly correct behavior, it provides the operator few insights into the strain that a given system
may be experiencing or if the system is behaving unexpectedly. In this study we will explore a
strategy for institutionally visualizing Unix system activity using collectd, its site-specific
alternatives, Graphite, DTrace and FreeBSD. We have chosen FreeBSD because it includes a trifecta
of Unix innovations: the bhyve hypervisor, the PF packet filter and the ZFS file system. While each
of these tools provides its own facilities for displaying performance metrics, they collectively present
a challenge to quantify their interaction.

Existing Facilities

Complementing the familiar yet verbose top(1), tcpdump(1) and gstat(8) commands,
bhyve, PF and ZFS each have their own dedicated tools for interactively and noninteractively
displaying their activity metrics. The first of these, the bhyve hypervisor, includes the most limited
quantification facility of the set. The /usr/sbin/bhyvectl --get-stats --vm=<vm
name> command provides a summary of virtual machine (VM) operation with an emphasis on its
kernel resource utilization but few with insights into its relative performance to the host.

The PF packet filter includes the pflog(4) logging interface for use with tcpdump(1) but the
output is consistent with standard tcpdump(1) behavior, providing literally a view of active
network connections. tcpdump(1) is complemented by other in-base tools such as netstat(1)
but none make any effort to visualize the activity of a given network interface.

Finally, the ZFS file system benefits from in-base tools such as gstat(8) which introduce visual
aids such as color coding of file system input/output operations and can be further complimented
with tools like sysutils/zfs-stats but each nonetheless provides a simplistic summary of file
system activity and performance.

Environment

While the subject of this study is the bhyve hypervisor itself, bhyve will also serve as the primary
environment for the study. This choice was made because of bhyve's indistinguishable host and VM
performance with CPU-intensive tasks, precluding the use of a more-familiar virtualization
technology such as FreeBSD jail(8). Virtual machines will be used for not only as participant
hosts but can also be used for primary hosts as the statistics collection and graphing host. The choice
of the bhyve hypervisor allows for this study to be conducted on FreeBSD 10.0 or later, PC-BSD
10.0 or later and its sister distribution TrueOS.

Testing Methodology

While the bhyve hypervisor is fully functional with the included vmrun.sh script found in
/usr/share/examples/bhyve/, this study will elect to use the vmrc system found a
bhyve.org/tools/vmrc/. vmrc is a virtual machine run command script that facilitates the
full provisioning (formatting and OS installation) and management (loading, booting, stopping) of
bhyve virtual machines. vmrc usage is as follows:

7

VM configuration files are located in /usr/local/vm/ and can be installed with the included
install.sh script.

vmrc usage is displayed with '/usr/local/etc/rc.d/vm' and a VM is provisioned with
'/usr/local/etc/rc.d/vm provision vm0' which corresponds to the vm0 configuration
file found at /usr/local/etc/rc.d/vm/vm0/vm0.conf .

/usr/local/etc/rc.d/vm
Usage: /usr/local/etc/rc.d/vm
[fast|force|one|quiet](start|stop|restart|rcvar|enabled|attach|boot
|debug|delete|destroy|fetch|format|grub|install|iso|jail|load|mount
|provision|status|umount)

vmrc's behavior is documented in the included instructions.txt file.

For our purposes, each VM will be simply provisioned with the ‘provision’ directive and loaded
and booted with the ‘start’ directive. This study will require at a minimum one or more participant
hosts that will be analyzed and optionally a VM for telemetry collection and graphing.

Graphite is a numeric time-series data and graphing system built in the Python scripting language
and is best documented at https://graphite.readthedocs.org . Legacy and independent
documentation sources exist but they vary in reliability and are rarely BSD Unix-oriented. The
countless opportunities to customize a Graphite graphing deployments has resulted in a myriad of
often site-specific documentation. For our purposes we will demonstrate a minimalistic “stock”
Graphite installation that uses default settings whenever possible.

Graphite Components

Graphite is comprised of the graphite-web Django web framework “project” that performs all
telemetry presentation tasks, the carbon telemetry collection daemon (scheduled to be replaced by
the ceres daemon) and the whisper round-robin storage system. Host activity telemetry from one
or more hosts is sent to the carbon daemon which in turn stores it in whisper, which retains or
discards telemetry data according to pre-determined criteria, resulting in a fixed-size database after
all criteria have been applied. The whisper storage system is modular and can be replaced with
alternative stores and the carbon telemetry collection daemon is data source-agnostic. carbon is
often supplied host telemetry using the collectd or statsd system statistics collection daemons
but such data can also be provided with a myriad of other tools given that the telemetry data format
is very simple:

<host.data.name> <statistic> <UET timestamp> which is fed into port 2003 of the
carbon host using TCP or UDP.

graphite-web in turn presents the host telemetry stored in whisper in a user-friendly manner
by default on port 8080 of the graphite-web host which is in turn often served via an
established http daemon such as lighttpd, Apache or Nginx via the Python-based Web Server
Gateway Interface (WSGI).

Complexity is the enemy of reliability…

…or installability for that matter. The operator will quickly find that the myriad of possible Graphite
configurations will greatly complicate the installation and operation of Graphite with most

8

documentation being of a site-specific and advanced-user nature. This study will mercifully provide
a minimalistic “default” configuration but in doing so will provide one that is highly user-
customizable in exchange for a negligible performance impact. The result is a “Unix” style
configuration if you will that leverages familiar Unix conventions and established programmability.

Example host or virtual machine telemetry collection and transmission script

#!/bin/sh

host=$(uname -n) # Used to distinguish the source within carbon
interval=3 # Sampling interval in seconds
destination=localhost # The carbon host
port=2003 # The default carbon port

while :; do # Operate continuously until terminated externally
 sleep $interval
 timestamp=$(date +%s)

Average load within last minute from uptime(1)
load=$(uptime | grep -ohe 'load average[s:][:].*' | \
 awk '{ print $3 }' | sed 's/,$//')
 echo "${host}.cpu.load $load $timestamp" | \
 socat - udp-sendto:$destination:$port
 echo "Sent: ${host}.cpu.load $load $timestamp" # Debug

IOPS from gstat(8)
iops=$(gstat -b | grep ada0 | head -1 | \
 awk '{print $2}')
 echo "${host}.ada0.iops $iops $timestamp" | \
 socat - udp-sendto:$destination:$port
 echo "Sent: ${host}.ada0.iops $iops $timestamp”
done

Example bhyve virtual machine telemetry syntax for the bhyve host:

bhyvectl --get-stats --vm=vm0 | \
grep "total number of vm exits" | awk '{print $6}'

bhyvectl --get-stats --vm=vm0 | \
grep "vm exits due to nested page fault" | awk '{print $8}'

Example of hard drive temperature monitoring using sysutils/smartmontools:

smartctl -a /dev/ada0 | grep 'Temperature_Celsius' | cut -c1-3

Sources of DTrace examples when support is enabled in the kernel:

https://wiki.freebsd.org/DTrace
http://www.brendangregg.com/DTrace/dtrace_oneliners.txt

9

Graphite installation script

#!/bin/sh
This must be run as root

Allow automatic pkg bootstrap
env ASSUME_ALWAYS_YES=YES pkg update

cd /root/

pkg install -y devel/git lang/python databases/py-sqlite3 \
devel/py-pip graphics/py-cairo x11-fonts/xorg-fonts-truetype
net/socat sysutils/tmux

pip install Django django-tagging Twisted pytz pyparsing

git clone https://github.com/graphite-project/graphite-web.git
git clone https://github.com/graphite-project/whisper.git
git clone https://github.com/graphite-project/carbon.git

cd graphite-web ; python setup.py install
cd ../whisper ; python setup.py install
cd ../carbon ; python setup.py install

cp /opt/graphite/webapp/graphite/local_settings.py.example
/opt/graphite/webapp/graphite/local_settings.py

Pardon the line-wrap
python /usr/local/lib/python2.7/site-packages/django/bin/django-
admin.py syncdb --pythonpath=/opt/graphite/webapp/ --
settings=graphite.settings --noinput

cp /opt/graphite/conf/carbon.conf.example \
/opt/graphite/conf/carbon.conf

Optionally send via UDP, pardon the line-wrap
sed -i '' -e 's/ENABLE_UDP_LISTENER = False/ENABLE_UDP_LISTENER =
True/' /opt/graphite/conf/carbon.conf

cp /opt/graphite/conf/storage-schemas.conf.example \
/opt/graphite/conf/storage-schemas.conf

mkdir -p /opt/graphite/storage/log/carbon-cache/carbon-cache-a

echo "To start carbon and graphite-web, run:"
echo "python /opt/graphite/bin/carbon-cache.py start"
echo "python /opt/graphite/bin/run-graphite-devel-server.py
/opt/graphite/"
echo
echo "To set the administrator credentials, run:"
echo "python /usr/local/lib/python2.7/site-
packages/django/bin/django-admin.py flush --
pythonpath=/opt/graphite/webapp/ --settings=graphite.settings"

10

Optional collectd installation (note its ZFS ARC Plugin)

#!/bin/sh
pkg install -y net-mgmt/collectd5
cat > /usr/local/etc/collectd.conf.diff <<-EOF
14c14
< FQDNLookup false

> #FQDNLookup true
180c180
< LoadPlugin write_graphite

> #LoadPlugin write_graphite
631,632c631,632
< # Server "ff18::efc0:4a42" "25826"
< <Server "localhost" "2003">

> Server "ff18::efc0:4a42" "25826"
> <Server "239.192.74.66" "25826">
1125,1137c1125,1137
< <Plugin write_graphite>
< <Node "example">
< Host "localhost"
< Port "2003"
< Protocol "udp"
< LogSendErrors true
< Prefix "collectd"
< Postfix "collectd"
< StoreRates true
< AlwaysAppendDS false
< EscapeCharacter "_"
< </Node>
< </Plugin>

> #<Plugin write_graphite>
> # <Node "example">
> # Host "localhost"
> # Port "2003"
> # Protocol "udp"
> # LogSendErrors true
> # Prefix "collectd"
> # Postfix "collectd"
> # StoreRates true
> # AlwaysAppendDS false
> # EscapeCharacter "_"
> # </Node>
> #</Plugin>
EOF

patch -f -R /usr/local/etc/collectd.conf \
/usr/local/etc/collectd.conf.diff

11

Administrative Options

Observe that all telemetry data collection in this strategy is obtained using in-base tools such as
uptime(1) and gstat(8). This decision both leverages and bridges the traditional Unix system
activity reporting tools and eliminates dependency and compatibility concerns. Furthermore, it
reveals a direct path to creating lower-overhead tools in the C programming language through the
extraction of the algorithms within those tools and creating purpose-built telemetry transmitters.
Should additional telemetry be desired, familiar sysctls, dtrace(1) and tools such as
sysutils/smartmontools can provide subsystem-specific telemetry such as hard disk
temperature with a myriad of parsing options.

With this in mind, we can turn to third party tools to enhance the operator’s experience, namely by
sending the output of our telemetry transmitting and graphite-web commands to a terminal
multiplexer such as tmux(1):

tmux new -d -s telemetry “sh send-telemetry.sh”
tmux new -d -s graphite “python /opt/graphite/bin/run-graphite …”

These can be accessed with:

tmux attach-session -t telemetry
tmux attach-session -t graphite

Future Directions

To leverage in-base tools is also to expose their shortcomings. While newer tools such as
bhyvectl(8) and zfs(8) include “get” arguments that can produce specific metrics, this new
convention has not been backported to well-established tools and to do so may be a worthy pursuit.
Similarly, many performance-related utilities have captive user interfaces with only some such as
top(1) featuring “batch” modes in which they output a telemetry snapshot for easy parsing.

Conclusions

The flexibility of this Unix system activity visualization strategy allows hosts to be monitored with
as little as a few-line site-specific shell script or a third-party system statistics collection daemon in
accordance to the operator’s requirements. For multi-layer environments such as bhyve(8) and
jail(8) virtualization stacks, this strategy can provide host and virtual machine telemetry
collection in a performant, low-overhead manner and in fact contain the graphite-web graphing
function in a virtual machine or jail(8). By employing this strategy, system operators and
developers can literally see the interaction of any system component that includes a corresponding
reporting utility. In time, this strategy will hopefully result in the institutional availability of
queryable reporting utilities, resulting in not only lower overhead at telemetry collection time but
also the elimination of complex output parsing. With customization and refinement of this tool set,
the systems operator and developer can experience a more visceral understanding of system
performance that is the antithesis of the stark Unix command line.

12

LLVM in the FreeBSD Toolchain

David Chisnall

1 Introduction

FreeBSD 10 shipped with Clang, based on
LLVM [5], as the system compiler for x86 and
ARMv6+ platforms. This was the first FreeBSD
release not to include the GNU compiler since the
project’s beginning. Although the replacement of
the C compiler is the most obvious user-visible
change, the inclusion of LLVM provides opportu-
nities for other improvements.

2 Rationale for migration

The most obvious incentive for the FreeBSD project
to switch from GCC to Clang was the decision by
the Free Software Foundation to switch the license
of GCC to version 3 of the GPL. This license is
unacceptable to a number of large FreeBSD con-
sumers. Given this constraint, the project had a
choice of either maintaining a fork of GCC 4.2.1
(the last GPLv2 release), staying with GCC 4.2.1
forever, or switching to another compiler. The first
option might have been feasible if other GCC users
had desired the same and the cost could have been
shared. The second was an adequate stopgap, but
the release of the C11 and C++11 specifications—
both unsupported by GCC 4.2.1—made this an im-
possible approach for the longer term. The remain-
ing alternative, to find a different compiler to re-
place GCC, was the only viable option.
The OpenBSD project had previously investi-

gated PCC, which performed an adequate job with
C code (although generating less optimised code
than even our old GCC), but had no support for
C++. The TENDRA compiler had also been con-
sidered, but development had largely stopped by
2007.
The remaining alternative was Clang, which was

still a very young compiler in 2008, but had some
significant commercial backing from companies in-
cluding Apple and Google. In 2009, Roman Di-

vacky and Pawel Worach begin trying to build
FreeBSD with Clang and quickly got a working
kernel, as long as optimisations were disabled. By
May 2011, Clang was able to build the entire base
system on both 32-bit and 64-bit x86 and so be-
came a viable migration target. A large number of
LLVM Clang bugs were found and fixed as a result
of FreeBSD testing the compilation of a large body
of code.

3 Rebuilding the C++ stack

The compiler itself was not the only thing that
the FreeBSD project adopted from GCC. The en-
tire C++ stack was developed as part of the GCC
project and underwent the same license switch.
This stack comprised the C++ compiler (g++), the
C++ language runtime (libsupc++) and the C++
Standard Template Library (STL) implementation
(libstdc++).
All of these components required upgrading to

support the new C++11 standard. The runtime
library, for example, required support for depen-
dent exceptions, where an exception can be boxed
and rethrown in another thread (or the same thread
later).
The FreeBSD and NetBSD Foundations jointly

paid PathScale to open source their C++ runtime
library (libcxxrt), which was then integrated into
the FreeBSD base system, replacing libsupc++.
The LLVM project provided an STL implementa-
tion (libc++), with full C++11 and now C++14
support, which was duly integrated.
Using libcxxrt under libstdc++ allowed C++

libraries that exposed C interfaces, or C++ inter-
faces that didn’t use STL types, to be mixed in the
same binary as those that used libc++. This in-
cludes throwing exceptions between such libraries.
Implementing this in a backwards-compatible

way required some linker tricks. Tradition-
ally, libsupc++ had been statically linked into

13

libstdc++, so from the perspective of all linked
programs the libsupc++ symbols appeared to come
from libstdc++. In later versions in the 9.x se-
ries, and in the 9-COMPAT libraries shipped for
10, libstdc++ became a filter library, dynamically
linked to libsupc++. This allows symbol resolu-
tion to work correctly and allows libsupc++ or
libcxxrt to be used as the filtee, which actually
provides the implementation of these symbols.

4 Problems with ports

The FreeBSD ports tree is a collection of infrastruc-
ture for building around 24,000 third-party pro-
grams and libraries. Most ports are very thin
wrappers around the upstream distribution’s build
system, running autoconf or CMake configurations
and then building the resulting make files or equiv-
alent. For well-written programs, the switch to
Clang was painless. Unfortunately, well-written
programs make up the minority of the ports tree.
To get the ports tree working with Clang required
a number of bug fixes.

4.1 Give up, use GCC

The first stopgap measure was to add a flag to the
ports tree allowing ports to select that they require
GCC. At the coarsest granularity is the USE GCC

flag knob, which allows a port to specify that it re-
quires either a specific version of GCC, or a specific
minimum version.
This is a better-than-nothing approach to get-

ting ports building again, but is not ideal. There is
little advantage in switching to a new base system
compiler if we are then going to use a different one
for a large number of ports. We also encounter
problems due to GCC’s current inability to use
libc++, meaning that it is hard to compile C++
ports with GCC if they depend on libraries that are
built with Clang, and vice versa. Currently around
1% of the ports tree requires this. Quite a few more
use the flags exposed in the compiler namespace
for the port’s USES flags. In particular, specify-
ing USES=compiler:openmp will currently force a
port to use GCC, as our Clang does not yet include
OpenMP support.
This framework allows ports to specify the exact

features of GCC that they require, allowing them

to be switched to using Clang once the

4.2 The default dialect

One of the simplest, but most common, things to fix
was the assumption by a lot of ports that they could
invoke the cc, program and get a C89 compiler.
POSIX97 deprecated the cc utility, because it ac-
cepts an unspecified dialect of C, which at the time
might have been K&R or C89. Over a decade later,
some code is still trying to use it. Today, it may
require K&R C (very rare), C89 (very common),
C99 (less common), or C11 (not yet common), and
so should be explicitly specifying a dialect. This
was a problem, because gcc, when invoked as cc

defaults to C89, whereas clang defaulted to C99
and now to C11.

This is not usually an issue, as the new versions of
the C standard are intended to be backwards com-
patible. Unfortunately, although valid C89 code is
usually valid C99 or C11 code, very little code is ac-
tually written in C89. Most C ports are written in
C plus GNU extensions. In particular, C99 intro-
duced the inline keyword, with a different meaning
to the inline keyword available as a GNU extension
to C89. This change causes linker failures when
C89 code with GNU-flavoured inline functions is
compiled as C99. For most ports, this was fixed by
adding -fgnu89-inline to the port’s CFLAGS.

4.3 C++ templates

Another common issue in C++ code relates to two-
phase lookup in C++ templates. This is a par-
ticularly tricky part of the C++ stack and both
GCC and Microsoft’s C++ compiler implemented
it in different, mutually incompatible, wrong ways.
Clang implements it correctly, as do new versions
of other compilers. Unlike other compilers, Clang
does not provide a fallback mode, accepting code
with GNU or Microsoft-compatible errors.

The most common manifestation of this differ-
ence is template instantiations failing with an un-
known identifier error. Often these can be fixed
by simply specifying this−> in front of the vari-
able named in the error message. In some more
complex programs, working out exactly what was
intended is a problem and so fixing it is impossible
for the port maintainer.

14

This is currently the largest cause of programs re-
quiring GCC. In particular, some big C++ projects
such as the Sphinx speech recognition engine have
not had new releases for over five years and so are
unlikely to be fixed upstream. Several of these
ports will only build with specific version of GCC
as well and so are still built with GCC in the ports
tree. Fortunately, many these (for example, some
of the KDE libraries) are now tested upstream with
Clang for Mac OS X compatibility and so simply
updating the port to a newer version fixed incom-
patibilities.

4.4 Goodbye tr1

C++ Technical Report 1 (TR1) is a set of experi-
mental additions to C++ that were standardised in
between C++03 and C++11. It provided a number
of extensions that were in headers in the tr1/ di-
rectory and in the std :: tr1 namespace. In C++11,
these were moved (with some small modifications)
into the standard header directory and namespace.

The new C++ stack is a full C++11 implemen-
tation and does not provide the TR1 extensions
to C++98. This means that code that references
these will fail, complaining about a missing header.
The simple fix for this is just to globally delete tr1
from the source files. Getting the code to also
build with GCC is somewhat more problematic,
but can be accomplished with a relatively small set
of #ifdefs.

4.5 Generic problems

In FreeBSD 10, we improved some of the generic
macros in math.h to use the C11 Generic ex-
pressions or GCC’s type select extension if avail-
able. The old code dispatched arguments to the
correct function by comparing sizeof(arg) against
sizeof(double) and so on. Now, we are able to ex-
plicitly match on the type. Macros such as isnan()
and isinf () will now raise compile-time errors if
they are invoked with a type that is not one of the
compatible ones.

This is something that we consider a feature. If
you pass an int to isnan(), then you probably have
a bug because there are no possible values of an
int that are not numbers. Unfortunately, a surpris-
ing amount of code depends on the previous buggy

behaviour. This is particularly prevalent in con-
figure scripts. For example, Mono checks whether
isnan(1) works, which checks whether there is a ver-
sion of isnan() that accepts an integer argument.
If it doesn’t find one, then it provides an imple-
mentation of isnan() that accepts a double as the
argument, which causes linker failures.

Fixing these was relatively easy, but time con-
suming. Most of the errors were in configure
scripts, but we did find a small number of real bugs
in code.

4.6 OpenMP

One of the current limitations of Clang as a C/C++
compiler is its lack of OpenMP support. OpenMP
is a pragma-based standard for compiler-assisted
parallelism and so is increasingly important in an
era when even mobile devices have multiple cores.
Intel has recently contributed an OpenMP imple-
mentation to Clang, but the code has not yet
been integrated. This implementation also in-
cludes a permissively licensed OpenMP runtime,
which would replace the GNU OpenMP library
(libgomp).

Work is currently underway to finish importing
the OpenMP support code into Clang. This is ex-
pected to be completed by LLVM 3.5, although
some extra effort may be required to build the
OpenMP support library on FreeBSD (Linux and
Mac OS X are its two current supported configura-
tions).

5 Looking forwards

Having a mature and easily extensible library-based
compiler infrastructure in the base system provides
a number of opportunities.

5.1 Install-time optimisation

A common misconception of LLVM, arising from
the VM in its name, is that it would allow us to
easily compile code once and run it on all archi-
tectures. LLVM uses an intermediate representa-
tion (IR) in the middle of the compiler pipeline.
This is not intended as a distribution format or as
a platform-neutral IR, in contrast to .NET or Java

15

bytecode. This is an intrinsic problem for any tar-
get for C compilation: once the C preprocessor has
run, the code is no longer target-neutral and much
C code has different paths for things like byte order
or pointer size.
Although LLVM IR is not architecture neutral,

it is microarchitecture neutral. The same LLVM IR
is generated for a Xeon and an Atom, however the
optimal code for both is quite different. It would be
possible for a significant number of ports to build
the binary serialisation of LLVM IR (‘bitcode’) and
ship this in packages. At install time, the pkg tool
could then optimise the binaries for the current ar-
chitecture.
To avoid long install times, packages could con-

tain both a generic binary and the IR, allowing the
IR to be stripped for people who are happy to run
the generic code, or used for optimisation as a back-
ground task if desired. It’s not clear how much
overhead this would add to installation. Build-
ing large ports can be time consuming, however
the slowest to build are typically C++ ports where
the build time is dominated by template expan-
sion. Generating a few megabytes of optimised ob-
ject code from LLVM IR typically only takes a few
seconds on a modern machine.
Microarchitectural optimisations are not the only

applicable kind that could benefit from this ap-
proach. Link-time optimisation can give a signifi-
cant speedup by doing interprocedural analysis over
an entire program and using these results in op-
timisation. Typically, the boundary for this is a
shared library, because you can not rely on code in
a shared library not changing. If we are shipping
both LLVM IR and binaries, however, it becomes
possible to specialise shared libraries for specific ex-
ecutables, potentially generating much better code.
The down side of this is that you end up without
code shared between users of a library, increasing
cache churn.
Fortunately, there is information available on a

system about whether this is likely to be a good
trade. The package tool is aware of how many pro-
grams link to a specific library and so can provide
hints about whether reduction in code sharing is
likely to be a problem. If you have a shared library
that is only used by a single program, obviously you
don’t get any benefits from it. The kernel may also
be able to profile how often two programs using the
same library are running simultaneously (or after a

short period) and so gaining any benefit from the
sharing.

Of course, these are just heuristics and it may
be that some library routines are very hot paths in
all of their consumers and so would benefit from
inlining anyway.

5.2 Code diversity

LLVM has been used by a number of other projects.
One interesting example is the Multicompiler [3],
which implements code diversity in LLVM with
the goal of making return-oriented programming
(ROP) more difficult. ROP turns the ability for an
attacker to run a small amount of arbitrary code
(e.g. control the target a single jump, such as
a return instruction) into the ability to run large
amounts of code. This works by stringing together
short sequences of instructions (‘gadgets’) in a bi-
nary, connected by jumps. Gadgets are particu-
larly common in code on x86, because the variable-
length instruction encoding and byte alignment of
instructions mean that a single instruction or in-
struction pair can have a number of different mean-
ings depending on where you start interpreting it.

The Multicompiler combats this in two ways.
First, it can insert nops into the binary, breaking
apart particularly dangerous accidental sequences.
Second, using a random seed, it performs various
permutations of the code, meaning that different
compiles can end up with code (including the sur-
viving gadgets) in different places.

We are currently working to incorporate the mul-
ticompiler into the ports tree, so that users building
site-local package sets can set a random seed and
get deterministic builds that are nevertheless dif-
ferent in binary layout to those produced by every-
one else. This makes generating an exploit that will
work on all FreeBSD systems very difficult. We will
also be able to incorporate this into the FreeBSD-
provided binary packages, quickly running diversi-
fied builds when a vulnerability is found, requiring
attackers to create new versions of their exploits.
By rolling these out in a staggered fashion, we can
make it hard to write an exploit that will work on
all FreeBSD users, even within a single package ver-
sion.

16

5.3 Sanitiser support

Clang, on Linux and Mac OS X, supports a number
of ‘sanitisers’, dynamic checkers for various kinds of
programming error. The compiler identifies partic-
ular idioms and inserts checks that are evaluated
at run time and may potentially call routines in a
supporting library. These include:

AddressSanitizer was the first of the family and
is intended to provide similar functionality to Val-
grind [6], with a much lower overhead. It detects
out-of-bounds accesses, use-after-free and other re-
lated memory errors.

MemorySanitizer checks for reads of unini-
tialised memory. This catches subtle bugs where
code can work fine on one system because memory
layout happens to contain valid values, but fail on
another.

ThreadSanitizer is intended to detect data
races.

UndefinedBehaviorSanitizer performs run-
time checks on code to detect various forms of
undefined behaviour. This includes checking that
bool variables only contain true or false values,
that signed arithmetic does not overflow, and so
on. This is very useful for checking portable code,
as undefined behaviour can often be implemented
in different ways on different platforms. For ex-
ample, integer division by zero may trap on some
architectures but may silently give a meaningless
result on others.

DataFlowSanitizer allows variables to be la-
belled and their flow through the program to be
tracked. This is an important building block for a
category security auditing tools.

All of these require a small runtime library
for supporting functionality, including intercepting
some standard C library functions (e.g. malloc()
and free ()). These have not yet been ported to
FreeBSD, but would provide significant benefits if
they were. In particular, running the FreeBSD test
suite with dynamic checks enabled on a regular ba-
sis would allow early detection of errors.

5.4 Custom static checks

The Clang static analyser provides generic func-
tionality for understanding control and data flow
inside compilation units. It also includes a num-
ber of checkers for correct usage of the relevant
languages, for example checking that variables are
not used uninitialised and NULL pointers are not
dereferenced in all possible control flows. The more
useful checks are those that incorporate some un-
derstanding of API behaviour.

By default, the analyser can check for correct us-
age of a number of POSIX APIs. Apple has also
contributed a number of checkers for OS X ker-
nel and userspace APIs. The framework is suffi-
ciently generic that we can also provide plugins for
FreeBSD APIs that are commonly misused.

Some of the checkers would be of more use if we
provided more annotation in the FreeBSD code.
For example, WITNESS allows dynamic lock or-
der checking, but Clang can also perform some of
these checks statically. It can also do some more
subtle checks, for example ensuring that every ac-
cess to a particular structure field has a specific
lock acquired. Ideally, the static analyser would be
combined with WITNESS, to elide run-time checks
where static analysis can prove that they are not
required.

5.5 Other analysis tools

The LLVM framework has been used to implement
a number of other analysis tools. Of particular rel-
evance to FreeBSD are SOAAP [4] and TESLA [1],
which were both developed at the University of
Cambridge with FreeBSD as the primary target.

TESLA is a framework for temporal assertions,
allowing the programmer to specify things that
must have happened (somewhere) before a line
of code is reached, or which must happen subse-
quently. A typical example is that within a sys-
tem call, by the time you get to the part doing
I/O, some other code must have already performed
a MAC check and then something else must later
write an audit log event. These complex interac-
tions are made harder to understand by the fact
that the kernel can load shared libraries. TESLA
uses Clang to parse temporal assertions and LLVM
to instrument the generated code, allowing them to
be checked at run time. A number of TESLA asser-

17

tions were added to the FreeBSD kernel in a branch
and used to validate certain parts of the system.
SOAAP is a tool to aid compartmentalising soft-

ware. This is an important mitigation technique,
limiting the scope of compromises. The Cap-
sicum [9] infrastructure provides the operating sys-
tem functionality required for running low-privilege
sandboxes within an application but deciding where
to place the partitions is still a significant engineer-
ing challenge. SOAAP is designed to make it easy
to explore this design space, by writing compart-
mentalisation hypotheses, ensuring that all shared
data really are shared, and simulating the perfor-
mance degradation from the extra process creation
and communication.
We anticipate a lot more tools along these lines

being developed over the coming years and intend
to take advantage of them.

5.6 The rest of the toolchain

We currently include code from either GNU binutils
or the ELF Toolchain project. Most of this dupli-
cates functionality already in LLVM. In particular,
every LLVM back end can parse assembly and gen-
erate object code, yet we still have the GNU as-
sembler. Various other tools, such as objdump have
direct replacements available in LLVM and some
others (e.g. addr2line would be simple wrappers
around the LLVM libraries). The only complex tool
is the linker.
There are two possible linkers available, both

based on LLVM: MCLinker [2] and lld [8].
MCLinker is currently able to link the entire
FreeBSD base system on i386, but lacks support
for version scripts and so the resulting binaries lack
symbol versions. It is a promising design, perform-
ing well in terms of memory usage and speed.
Lld is developed primarily by Sony and is part

of the LLVM project. It is currently less mature,
but is advancing quickly. Both use a scalable in-
ternal representation, with some subtle differences,
inspired in part by Apple’s 64-bit linker. MCLinker
aims to be a fast ELF-only linker, whereas lld aims
to link all of the object code formats supported
by LLVM (ELF, Mach-O and PE/COFF). We are
likely to import one of these in the near future.
We have already imported LLDB, the LLVM de-

bugger, into the base system, although it was not
quite ready in time for the 10.0 release. LLDB uses

numerous parts of LLVM. When you type an ex-
pression into the GNU debugger command line, it
uses its internal parser, which supports a subset of
the target language. In LLDB, the expression is
parsed with Clang. The parsing libraries in Clang
provide hooks for supplying declarations and these
are supplied by LLDB from DWARF debug infor-
mation. Once it’s parsed, the Clang libraries emit
LLVM IR and the LLVM JIT produces binary code,
which is copied into the target process’s address
space and executed.

5.7 Other compilers in FreeBSD

When people think of compilers in FreeBSD, the
C and C++ compilers are the most obvious ones.
There are a number of others, for domain-specific
languages, in various places. For example, the
Berkeley Packet Filter (BPF) contains a simple
hand-written JIT compiler in the kernel. This pro-
duces code that is faster than the interpreter, but
not actually very good in absolute terms.
Having a generic compiler infrastructure for writ-

ing compilers allows us to replace some of these
with optimising compilers. In a simple proof of
concept for an LLVM-based BPF JIT (a total of
under 500 lines of code, implementing all of the
BPF bytecode operations), we were able to gener-
ate significantly better code than the current in-
kernel JIT. The LLVM-based JIT in its entirety
(excluding LLVM library code) was smaller than
the platform-dependent code in the in-kernel JIT
and will work for any architecture that LLVM sup-
ports, whereas the current JIT only supports x86[-
64].
It is not a simple drop-in replacement, however.

LLVM is large and does not gracefully handle low-
memory conditions, so putting it inside the kernel
would be a terrible idea. There are two possible
solutions to this. The first is to run the JIT in
userspace, with the kernel streaming BPF byte-
codes to a device that a userspace process reads,
compiles, and then writes the generated machine
code back into. The kernel can use the interpreter
for as long as the userspace process takes to per-
form the compilation. The alternative is to use the
NetMap [7] infrastructure to perform packet filter-
ing entirely in userspace.
This is less attractive for BPF, where rule sets

tend to be fairly simple and even the interpreter is

18

often fast enough. It is more interesting for complex
firewall rules, which change relatively infrequently
(although the state tables are updated very often)
and which can be a significant bottleneck.

6 Platform support

FreeBSD currently supports several architectures.
We have enabled Clang/LLVM by default on x86,
x86-64, and ARMv6 (including ARMv7). This
leaves older ARM chips, SPARC, PowerPC, MIPS,
and IA64 still using GCC. Support is progressing
in LLVM for SPARC, PowerPC and MIPS.

We are able to compile working PowerPC64 ker-
nels without optimisation, but there are still some
optimisation bugs preventing Clang from becom-
ing the default compiler on this architecture. On
32-bit PowerPC, LLVM still lacks full support
for thread-local storage and position-independent
code. SPARC support is progressing in LLVM, but
it has not been recently tested.

We are currently compiling significant amounts
of MIPS code (including FreeBSD libc) with LLVM
and a large patch set. This includes significant im-
provements to the integrated assembler, but also
support for MIPS IV. Currently, LLVM supports
MIPS32, MIPS32r2, MIPS64 and MIPS64r2. The
earlier 64-bit MIPS III and MIPS IV ISAs are still
widespread. The changes required to support these
in the back end are not very complex: simply dis-
able the instructions that are not present in earlier
ISA revisions. They should be upstreamed before
LLVM 3.5 is released.

The (unfinished) IA64 back end in LLVM was
removed due to lack of developer interest. It is un-
likely that this architecture will ever be supported
in LLVM, and it is doubtful that it has a long-term
future in FreeBSD, as machines that use it are rare,
expensive, and unlikely to be produced in the fu-
ture.

7 Summary

Importing LLVM and Clang into the FreeBSD base
system and switching Tier 1 platforms to use it
was a significant amount of effort. So far, we have
only just started to reap the benefits of this work.
Over the next few years, LLVM is likely to be an

important component of the FreeBSD base system.

This paper has outlined a few of the possible di-
rections. It is likely that there are more that are
not yet obvious and will emerge over time.

8 Acknowledgements

The task of importing LLVM into FreeBSD was be-
gun by Roman Divacky and Pawel Worach in 2009
and without their initiative none of this work would
have been possible. Since then, a large number of
FreeBSD developers have worked to improve the
state of the LLVM toolchain in FreeBSD, includ-
ing Dimitry Andric, Ed Maste, Brooks Davis, Ed
Schouten, and many others.

Portions of this work were sponsored by
the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory
(AFRL), under contract FA8750-10-C-0237. The
views, opinions, and/or findings contained in this
report are those of the authors and should not be
interpreted as representing the official views or poli-
cies, either expressed or implied, of the Defense Ad-
van ced Research Projects Agency or the Depart-
ment of Defense.

References

[1] Temporally enhanced security logic asser-
tions (TESLA). http://www.cl.cam.ac.uk/

research/security/ctsrd/tesla/ (accessed
31/1/2014).

[2] Chinyen Chou. MCLinker BSD. In BSDCan,
2013.

[3] Michael Franz, Stefan Brunthaler, Per Larsen,
Andrei Homescu, and Steven Neisius. Profile-
guided automated software diversity. In Pro-
ceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimiza-
tion (CGO), CGO ’13, pages 1–11, Washington,
DC, USA, 2013. IEEE Computer Society.

[4] Khilan Gudka, Robert N. M. Watson, Steven
Hand, Ben Laurie, and Anil Madhavapeddy.
Exploring compartmentalisation hypotheses
with soaap. In Proceedings of the 2012

19

IEEE Sixth International Conference on Self-
Adaptive and Self-Organizing Systems Work-
shops, SASOW ’12, pages 23–30, Washington,
DC, USA, 2012. IEEE Computer Society.

[5] Chris Lattner and Vikram Adve. LLVM:
A compilation framework for lifelong program
analysis & transformation. In Proceedings of the
International Symposium on Code Generation
and Optimization: Feedback-directed and Run-
time Optimization, CGO ’04, pages 75–, Wash-
ington, DC, USA, 2004. IEEE Computer Soci-
ety.

[6] Nicholas Nethercote and Julian Seward. Val-
grind: A framework for heavyweight dy-
namic binary instrumentation. SIGPLAN Not.,
42(6):89–100, June 2007.

[7] Luigi Rizzo and Matteo Landi. Netmap: Mem-
ory mapped access to network devices. In Pro-
ceedings of the ACM SIGCOMM 2011 Con-
ference, SIGCOMM ’11, pages 422–423, New
York, NY, USA, 2011. ACM.

[8] Michael Spencer. lld - the LLVM Linker. In
EuroLLVM, 2012.

[9] Robert N. M. Watson, Jonathan Anderson, Ben
Laurie, and Kris Kennaway. Capsicum: Practi-
cal capabilities for unix. In Proceedings of the
19th USENIX Conference on Security, USENIX
Security’10, pages 3–3, Berkeley, CA, USA,
2010. USENIX Association.

20

NPF - progress and perspective

Mindaugas Rasiukevicius
The NetBSD Project
rmind@netbsd.org

January 2014

Abstract

NPF – is a NetBSD packet filter which can do
TCP/IP traffic filtering, stateful inspection and
network address translation with a development
focus on performance, scalability and modularity.
The packet filter was first introduced with the
NetBSD 6.0 release. This paper and the presenta-
tion will cover the main NPF features: its filtering
engine, stateful inspection and NAT, application
level gateways (ALGs), tables and extensions. It
will give an overview of some internals, e.g. key
data structures used in NPF and the rationale be-
hind some design decisions. Finally, the latest de-
velopments in NetBSD -current will be discussed,
including: addition of BPF coprocessor and just-
in-time (JIT) compilation which lead to NPF being
fully switched to BPF byte-code, support for tables
which use CDB with perfect hashing, stateless NAT
with NPTv6 and work in progress towards lockless
state lookup.

1 Introduction

NPF was introduced with the NetBSD 6.0 release.
The expectations for the first release were to let
users try the technology, get wider testing and thus
get the core features stable, as well as gather gen-
eral feedback. There have been many improve-
ments, fixes and developments since then. In this
section we will briefly review the main features of
NPF. Then will take a look at the recent develop-
ments in section 2. This work will be appear in the
NetBSD 7.0 release. Finally, the work in progress
will be discussed in section 3.
Some understanding and knowledge of syntax

will be assumed in the examples. Comprehensive

information about NPF capabilities, configuration
and the syntax can found in the NPF documenta-
tion web page [npf14], as well as npf.conf(5) and
other manual pages.

1.1 Multi-core scalability

NPF was designed and developed with a focus
on high performance and scalability. Multi-core
systems became prevalent in the last decade. In
2009, the Linux Netfilter project announced nfta-
bles, with one of the main features being: ”the core
is completely lockless ...” [McH09]. At that time
there was no SMP-optimised packet filter in *BSD.
The NPF idea was partly a BSD response to nfta-
bles. The main motivation was to design a packet
filter for multi-core systems from the very begin-
ning, as well as use byte-code based processing to
have protocol independence and flexibility. For ex-
ample, L7 filtering can be done without any kernel
modifications.
To achieve high concurrency, NPF employs vari-

ous lockless techniques, e.g. ruleset inspection uses
passive serialisation1 and implements completely
lockless processing. The details of state lookup will
be discussed in further sections. Large IP sets can
be stored in the tables for very efficient and concur-
rent lookups, which will be discussed in section 2.2.
Other components of NPF where very high concur-
rency is not a concern use fine-grained locking.

1.2 Stateful filtering

NPF supports stateful filtering – a required feature
for any modern packet filter. It performs full track-
ing of TCP connections. This means tracking and

1Similar concept to RCU, but patent-free.

21

inspecting not only the source and destination IP
addresses and port numbers, but also TCP state,
sequence numbers and window sizes [Roo01]. The
current data structures to store tracked connections
will be discussed in section 3.1.

1.3 NAT

Another major feature is network address trans-
lation. Currently, NPF supports dynamic (state-
ful) NAT which can perform network address port
translation (NAPT, also known as masquerading),
as well as other variations of inbound and outbound
NAT, including bi-directional NAT. An interface
for application level gateways (ALGs) is provided
to supplement NAT, e.g. detect traceroute packets
and perform the address translation in the embed-
ded payload.

1.4 Dynamic rules

NPF has gained support for dynamic rules with the
NetBSD 6.1 release. This allows us to add or re-
move rules at run-time without reloading the whole
configuration, in a similar way to Linux iptables.
For example:

$ npfctl rule "test-set" add \

block proto icmp from 192.168.0.6

OK 1

$ npfctl rule "test-set" list

block proto icmp from 192.168.0.6

$ npfctl rule "test-set" add \

block from 192.168.0.7

OK 2

$ npfctl rule "test-set" list

block proto icmp from 192.168.0.6

block from 192.168.0.7

$ npfctl rule "test-set" rem \

block from 192.168.0.7

$ npfctl rule "test-set" rem-id 1

$ npfctl rule "test-set" list

Each rule gets a unique identifier which is re-
turned on addition. As shown in the example, the
rules can be removed using the identifier or by pass-
ing the exact filter criteria. In the latter case, the
SHA1 hash is computed on a rule metadata to iden-
tify it.

1.5 Modularity and extensions

Another focus of NPF development was modular-
ity and extensibility. Each component in NPF is
abstracted and has its own strict interface. Rule
procedures in NPF are the main interface to im-
plement custom extensions. An extension consists
of two parts: a dynamic module (.so file) supple-
menting the npfctl(8) utility and a kernel module.
The syntax of npf.conf supports arbitrary proce-
dures with their parameters, as supplied by the
modules. It takes about 160 lines of code, including
the comments and a license text, for a demo exten-
sion which blocks an arbitrary percentage of traffic.
The extension does not require any modifications to
the NPF core or npfctl(8). Facilities such as traffic
normalisation and packet logging are provided as
extensions.

1.6 Running, testing and debugging
in userspace

For testing, NPF uses NetBSD’s RUMP (Runnable
Userspace Meta Programs) framework – a kernel
virtualisation and isolation technique, which en-
ables running of the NetBSD kernel or parts of it
in userspace, like a regular program. For example,
NetBSD’s TCP/IP stack could be run in userspace
[Kan09] and other applications be passed through
it. This makes debugging or profiling significantly
easier due to the availability of tools such as gdb(1).
NPF regression tests are integrated into NetBSD’s
test suite and thus are part of the periodic auto-
mated runs.
One of the reasons to emphasize modularity and

strict interfacing within the NPF code base was to
ease testing of the individual components or mech-
anisms: there are unit tests for every NPF subsys-
tem. They are available within npftest(8) – a pro-
gram containing both the tests and the NPF kernel
part running as a userspace program. npftest(8)
can also read and process tcpdump pcap files with
a custom npf.conf configuration. This enables the
analysis of a particular stream or connection in
userspace. The npfctl(8) utility has a ”debug” com-
mand which can print disassembled BPF byte-code
and dump the configuration in the format sent to
the kernel.
This set of tools which work in the userspace was

a major factor which made NPF development much

22

easier and faster.

2 Improvements

2.1 BPF and JIT-compilation

In 2012, NetBSD imported sljit2 – a stack-less
platform independent just-in-time (JIT) compiler,
which supports various architectures. It is used
by the PCRE library and is reasonably tested and
benchmarked. The primary purpose of the addi-
tion was to support JIT-compilation for BPF. This
opened the possibility to consider using BPF byte-
code in NPF.

However, the original instruction set lacked cer-
tain capabilities which would be useful for NPF and
potentially other applications. In particular, it was
missing ability to perform more complex operations
from the BPF program. For example, while most
of the packet inspection logic can stay in the byte-
code, operations such as looking up an IP address
in some container or walking the IPv6 headers and
returning some offsets have to be done externally.

Hence, honouring the tradition of the RISC-
like instruction sets, it was decided to add sup-
port for a BPF coprocessor – a generic mecha-
nism to offload more complex packet inspection
operations. Two new instructions were added to
the misc (BPF MISC) category: BPF COP and
BPF COPX. These instructions allow BPF pro-
grams to call predetermined functions by their in-
dex. It is important to note that there is no default
coprocessor which could be invoked via /dev/bpf
and the userlevel cannot set one. Only a ker-
nel subsystem, which is in full control of the co-
processor, can set it (the in-kernel API was ex-
tended with bpf set cop(9), bpf validate ext(9) and
bpf filter ext(9) routines to support this). Each
BPF caller in the kernel would have its own in-
dependent context (state) and therefore different
callers would not affect each other. The functions
are predetermined and cannot change during the
life-cycle of the BPF context. The coprocessor can
inspect the packet in a read-only manner and re-
turn some numeric values. It cannot alter the flow
of the program, therefore this functionality does
not make BPF programs Turing-complete.

2http://sljit.sourceforge.net [accessed: 31 January 2014]

Originally, NPF had its own instruction set called
n-code. The main motivation for n-code was to
provide CISC-like complex instructions and thus
reduce the processing overhead. With BPF copro-
cessor and JIT-compilation support, it became pos-
sible to use BPF byte-code in NPF (and, in fact,
unify all packet classification engines under BPF).
Therefore, the original n-code became redundant
and was dropped in favour of BPF byte-code in
NPF.
This was a major change and simplification of

the NPF core. It also had an important user-visible
effect – the availability of libpcap and its syntax (as
described in the pcap-filter(7) manual page) which
is widely used in tcpdump(1). For example:

block out final pcap-filter \

"tcp and dst 10.1.1.252"

block in final pcap-filter \

"ip[2:2] > 576"

As illustrated in the example, BPF supports
byte-level inspection and virtually any filter pat-
tern can be constructed and passed as a rule.

2.2 Tables and perfect hashing

Another major improvement was support for a new
NPF table type. Initially, there were two types:
hash and tree. The first provides a hash table
which was recently improved to use lockless lists
per bucket. This table structure provides amor-
tised O(1) lookup time and high concurrency, but
in a case of increasing number of elements, it may
suffer from the collisions. The future work would
be to improve the implementation to use efficient
and concurrent hash resizing techniques [TMW11].
The second is implemented using a PATRICIA

tree which provides O(k) lookup time (where k is
a key length) and supports prefix matching. How-
ever it uses read-write locks and thus has limited
scalability.
The third, new type is cdb – a constant database

which uses perfect hashing and thus guarantees
O(1) complexity and provides completely lockless
lookup. In case of a static set of data, this provides
highest performance and ideal scalability. NetBSD
has a general purpose interface to produce and ac-
cess constant databases, which is provided as a part
of libc. The API is described in the cdbr(3) and
cdbw(3) manual pages.

23

2.3 Stateful ends

In NPF, the state is uniquely identified by a 6-tuple:
source address with port, destination address with
port, protocol and the interface identifier. Remem-
ber that if a packet belongs to a connection which
has a state entry, it will completely bypass the rule-
set inspection on that interface. It was a deliberate
choice to include the interface as a state identifier
so it would match only on the interface where it was
created. Bypassing the ruleset on other interfaces
can have undesirable effects, e.g. a packet with a
spoofed IP address might bypass ingress filtering.
Associating a state with two interfaces (forwarding
case) may also cause problems if the routes change.

However, there are legitimate cases when bypass-
ing on other interfaces is safe and useful, e.g. when
in case of forwarding the ruleset on one interface is
larger and the administrator ensures that there are
no security or other implications. For this case, a
special keyword stateful-ends was added in NPF to
perform the state lookup on other interfaces as well.
This may lead to higher performance in certain con-
figurations and may also handle some asymmetric
routing cases. The administrator is free to choose
whether stateful or stateful-ends is more suitable.

2.4 Stateless NAT and NPTv6

An important addition was stateless (static) NAT.
The addition is relatively easy given that NPF al-
ready supports stateful (dynamic) NAT – the pol-
icy is always looked up by inspecting the NAT rule-
set. The policy implements a particular algorithm
of the translation. Consider the following syntax of
”map” (in a simplified Backus-Naur Form):

map =

"map" interface

("static" algo | "dynamic")

net-seg ("->" | "<-" | "<->") net-seg

["pass" filt-opts]

The translation happens between two network
segments (syntactically, defined on the left and the
right hand sides respectively, separated by an arrow
which defines the translation type). Currently, the
simplest supported form of stateless NAT is when
both segments consist of only one host – that is, a
1:1 translation of two IP addresses.

The second supported form is the IPv6-to-IPv6
Network Prefix Translation, shortly NPTv6, which
is an algorithmic transformation of IPv6 prefixes as
described in RFC 6296 [WB11].

2.5 Dynamic interface handling

One feature, which has been constantly requested
by the users and finally added, is dynamic handling
of interface arrivals and departures. In the latest
NPF, it is possible to create rules for the interfaces
which do not exist at the moment of configuration
load. That is, instead of using the interface index
(see if nametoindex(3) routine), the interface is al-
ways identified by the name (e.g. ppp0) regardless
of its existence.

NPF internally maps interface names to the gen-
erated interface IDs which are assigned to the in-
terfaces when they arrive. Therefore, matching an
interface is an O(1) operation merely matching the
IDs. It is important to note that this is handled
in a way which does not modify the actual rule-
set, therefore no synchronisation is required. If the
expected interface departs, the rule will simply not
match. It will match once the interface has arrived.
Hence, interface changes have minimum effect on
NPF’s packet processing capability.

The interface addresses can be dynamically han-
dled by reusing NPF tables. However, there is a
general need for a concurrent iteration (and lookup)
of the interface addresses. Therefore, the objective
is to add such mechanism at the network stack level
and provide a general purpose API.

3 In development

3.1 Lockless state inspection

Unlike the ruleset inspection, the state inspection
currently uses locks. Specifically, it uses a hash
table (the MurmurHash2 function is used) where
each bucket has a red-black tree and a read-write
lock to protect it. Distributed locks reduce the lock
contention and the trees ensure O(log2 n) lookup
complexity. While such a design provides a cer-
tain level of concurrency, it has important draw-
backs: 1) read-write locks suffer from cache-line
bouncing effect and do not scale in the long term,
especially on many-core systems 2) the overhead

24

Figure 1: NPF scalability: npftest(8) benchmark using RUMP framework. 12 cores (24 threads), Intel(R)
Xeon(R) CPU E5-2620, 2.00GHz.

of hashing, tree lookup and the read-write lock it-
self is not insignificant. As illustrated in Figure 1,
the performance of the state inspection starts to
degrade after 8 concurrent clients due to the de-
scribed drawbacks, while the ruleset inspection has
practically linear scalability on a 12-core proces-
sor with 2 threads per core (the lower growth after
12 clients is due to the CPU topology – hardware
threads start to contend within the core). It should
be noted that using a hash table alone is not suit-
able, as it suffers from DoS attacks exploiting col-
lisions and worst case O(n) behaviour if the bucket
would have a linked list. Hence a better data struc-
ture is needed. The main requirements for the data
structure are the following: 1) decent performance
i.e. not only the algorithmic complexity, but also
cache-awareness which is particularly important for
modern CPUs 2) high concurrency 3) resistance to
attacks exploiting worst case complexity.

The hash tables generally do not meet the third
requirement unless combined with other data struc-
tures or additional techniques. Although there are
concurrent hash tables which are capable of effi-
cient and fully concurrent resizing, it may be quite
difficult to perform this in a way which would be
resistant to a sophisticated DoS attack. Hence we
leave the discussion of such a possibility for a future
research and focus on the existing solution scope –

the lockless trees.
The packet filter performs 6-tuple state lookup

where the key may be up to 40 bytes long. It is gen-
erally easier to implement concurrent radix trees,
but given that our key is not small, they would have
a higher lookup complexity. Also, radix trees which
use a higher radix (arity) and sparse keys tend to
have much higher memory usage. After some em-
pirical research, the current data structure which is
considered as a main candidate demonstrating good
characteristics is Masstree – a lockless cache-aware
B+ tree [MKM12]. However, one of the challenges
is adapting it to the kernel environment. In par-
ticular, the code in the kernel cannot block while
holding a spin-lock and it cannot block in the in-
terrupt handler (e.g. when allocating the memory).
Therefore, memory allocation failures while split-
ting the tree nodes must be handled in a graceful
way. The current work in progress is to address
these problems, integrate the data structure with
NPF, benchmark the final solution and publish it.
This work is expected to appear in the NetBSD 7.0
release.

4 Conclusion

Over the last few years, the core of NPF had some
code refactoring and design adjustments. At the

25

same time, the core functionality has gained a lot of
testing and accumulated some user base. Upon the
completion of state lookup and other improvements
described in this paper, the core architecture will
be highly optimised and generally solid ground for
the further growth of features: high availability and
quality of service.

References

[Kan09] Antti Kantee. Environmental Inde-
pendence: BSD Kernel TCP/IP in
Userspace. In AsiaBSDcon 2009 pro-
ceedings. Helsinki University of Technol-
ogy, 2009.

[McH09] Patrick McHardy. [ANNOUNCE]: First
release of nftables.
http://lwn.net/Articles/324251/,
March 2009.

[MKM12] Yandong Mao, Eddie Kohler, and
Robert Tappan Morris. Cache craftiness
for fast multicore key-value storage. In
Proceedings of the 7th ACM European
Conference on Computer Systems, Eu-
roSys ’12, pages 183–196. ACM, 2012.

[npf14] NPF documentation.
http://www.netbsd.org/~rmind/npf,
January 2014.

[Roo01] Guido Van Rooij. Real Stateful TCP
Packet Filtering in IP Filter. In 10th
USENIX Security Symposium invited
talk, August 2001.

[TMW11] Josh Triplett, Paul E. McKenney, and
Jonathan Walpole. Resizable, scalable,
concurrent hash tables via relativistic
programming. In Proceedings of the
2011 USENIX Conference on USENIX
Annual Technical Conference, USENIX-
ATC’11, pages 11–11, Berkeley, CA,
USA, 2011. USENIX Association.

[WB11] Margaret Wasserman and Fred Baker.
IPv6-to-IPv6 Network Prefix Transla-
tion. RFC 6296, June 2011.

26

OpenZFS:
a Community of Open Source ZFS Developers

Matthew Ahrens
Delphix

San Francisco, CA

mahrens@delphix.com

Abstract—OpenZFS is a collaboration among open
source ZFS developers on the FreeBSD, illumos, Linux,
and Mac OSX platforms. OpenZFS helps these developers
work together to create a consistent, reliable, performant
implementation of ZFS. Several new features and perfor-
mance enhancements have been developed for OpenZFS
and are available in all open-source ZFS distributions.

I. INTRODUCTION

In the past decade, ZFS has grown from a project
managed by a single organization to a distributed,
collaborative effort among many communities and
companies. This paper will explain the motivation
behind creating the OpenZFS project, the problems
we aim to address with it, and the projects under-
taken to accomplish these goals.

II. HISTORY OF ZFS DEVELOPMENT

A. Early Days
In the early 2000’s, the state of the art in filesys-

tems was not pretty. There was no defense from
silent data corruption introduced by bit rot, disk
and controller firmware bugs, flaky cables, etc. It
was akin to running a server without ECC memory.
Storage was difficult to manage, requiring different
tools to manage files, blocks, labels, NFS, mount-
points, SMB shares, etc. It wasn’t portable between
different operating systems (e.g. Linux vs Solaris)
or processor architectures (e.g. x86 vs SPARC vs
ARM). Storage systems were slow and unscalable.
They limited the number of files per filesystem,
the size of volumes, etc. When available at all,
snapshots were limited in number and performance.
Backups were slow, and remote-replication soft-
ware was extremely specialized and difficult to use.
Filesystem performance was hampered by coarse-
grained locking, fixed block sizes, naive prefetch,

and ever-increasing fsck times. These scalability
issues were mitigated only by increasingly complex
administrative procedures.

There were incremental and isolated improve-
ments to these problems in various systems. Copy-
on-write filesystems (e.g. NetApp’s WAFL) elimi-
nated the need for fsck. High-end storage systems
(e.g. EMC) used special disks with 520-byte sectors
to store checksums of data. Extent-based filesystems
(e.g. NTFS, XFS) worked better than fixed-block-
size systems when used for non-homogenous work-
loads. But there was no serious attempt to tackle all
of the above issues in a general-purpose filesystem.

In 2001, Matt Ahrens and Jeff Bonwick started
the ZFS project at Sun Microsystems with one
main goal: to end the suffering of system admin-
istrators who were struggling to manage complex
and fallible storage systems. To do so, we needed
to re-evaluate obsolete assumptions and design an
integrated storage system from scratch. Over the
next 4 years, they and a team of a dozen engineers
implemented the fundamentals of ZFS, including
pooled storage, copy-on-write, RAID-Z, snapshots,
and send/receive. A simple administrative model
based on hierarchical property inheritance made
it easy for system administrators to express their
intent, and made high-end storage features like
checksums, snapshots, RAID, and transparent com-
pression accessible to non-experts.

B. Open Source

As part of the OpenSolaris project, in 2005 Sun
released the ZFS source code as open source soft-
ware, under the CDDL license. This enabled the
ports of ZFS to FreeBSD, Linux, and Mac OSX,
and helped create a thriving community of ZFS

27

users. Sun continued to enhance ZFS, bringing it to
enterprise quality and making it part of the Solaris
operating system and the foundation of the Sun
Storage 7000 series (later renamed the Oracle ZFS
Storage Appliance). The other platforms continually
pulled changes from OpenSolaris, benefiting from
Sun’s continuing investment in ZFS. Other compa-
nies started creating storage products based Open-
Solaris and FreeBSD, making open-source ZFS an
integral part of their products.

However, the vast majority of ZFS development
happened behind closed doors at Sun. At this time,
very few core enhancements were made to ZFS
by non-Sun contributors. Thus although ZFS was
Open Source and multi-platform, it did not have an
open development model. As long as Sun contin-
ued maintaining and enhancing ZFS, this was not
necessarily an impediment to the continued success
of products and community projects based on open-
source ZFS – they could keep getting enhancements
and bug fixes from Sun.

C. Turmoil

In 2010, Oracle acquired Sun Microsystems,
stopped contributing source code changes to ZFS,
and began dismantling the OpenSolaris community.
This raised big concerns about the future of open-
source ZFS – without its primary contributor, would
it stagnate? Would companies creating products
based on ZFS flounder without Sun’s engineering
resources behind them? To address this issue for
both ZFS and OpenSolaris as a whole, the Illumos
project was created. Illumos took the source code
from OpenSolaris (including ZFS) and formed a
new community around it. Where OpenSolaris de-
velopment was controlled by one company, illumos
creates common ground for many companies to con-
tribute on equal footing. ZFS found a new home in
Illumos, with several companies basing their prod-
ucts on it and contributing code changes. FreeBSD
and Linux treated Illumos as their upstream for
ZFS code. However, there was otherwise not much
interaction between platform-specific communities.
There continued to be duplicated efforts between
platforms, and surprises when code changes made
on one platform were not easily ported to others.
As the pace of ZFS development on FreeBSD and

Linux increased, fragmentation between the plat-
forms became a real risk.

III. THE OPENZFS COLLABORATION

A. Goals
The OpenZFS project was created to accomplish

three goals:
1) Open communication: We want everyone

working on ZFS to work together, regardless of
what platform they are working on. By working to-
gether, we can reduce duplicated effort and identify
common goals.

2) Consistent experience: We want users’ expe-
rience with OpenZFS to be high-quality regardless
of what platform they are using. Features should be
available on all platforms, and all implementations
of ZFS should have good performance and be free
of bugs.

3) Public awareness: We want to make sure
that people know that open-source ZFS is available
on many platforms (e.g. illumos, FreeBSD, Linux,
OSX), that it is widely used in some of the most
demanding production environments, and that it
continues to be enhanced.

B. Activities
We have undertaken several activities to accom-

plish these goals:
1) Website: The http://open-zfs.org website

(don’t forget the dash!) publicizes OpenZFS
activities such as events, talks, and publications.
It acts as the authoritative reference for technical
work, documenting both usage and how ZFS
is implemented (e.g. the on-disk format). The
website is also used as a brainstorming and
coordination area for work in progress. To facilitate
collaboration, the website is a Wiki which can be
edited by any registered user.

2) Mailing list: The OpenZFS developer mail-
ing list[1] serves as common ground for develop-
ers working on all platforms to discuss work in
progress, review code changes, and share knowledge
of how ZFS is implemented. Before its existence,
changes made on one platform often came as a
surprise to developers on other platforms, and some-
times introduced platform compatibility issues or
required new functions to be implemented in the
Solaris Porting Layer. The OpenZFS mailing list

28

allows these concerns to be raised and addressed
during code review, when they can easily be ad-
dressed. Note that this mailing list is not a re-
placement for platform-specific mailing lists, which
continue to serve their role primarily for end users
and system administrators to discuss how to use
ZFS, as well for developers to discuss platform-
specific code changes.

3) Office hours: Experts in the OpenZFS com-
munity hold online office hours[2] approximately
once a month. These question and answer sessions
are hosted by a rotating cast of OpenZFS develop-
ers, using live audio/video/text conferencing tools.
The recorded video is also available online.

4) Conferences: Since September 2013, 6 Open-
ZFS developers have presented at 8 conferences.
These events serve both to increase awareness of
OpenZFS, and also to network with other devel-
opers, coordinating work in person. Additionally,
we held the first OpenZFS Developer Summit[3]
in November 2013 in San Francisco. More than 30
individuals participated, representing 14 companies
and all the major platforms. The two-day event
consisted of a dozen presentations and a hackathon.
Ten projects were started at the hackathon, including
the “best in show”: a team of 5 who ported the
TestRunner test suite from illumos to Linux and
FreeBSD. Slides from the talks and video recordings
are available on the open-zfs.org website[3].

C. New features

In this section we will share some recent improve-
ments to the OpenZFS code. These changes are
available on all OpenZFS platforms (e.g. Illumos,
FreeBSD, Linux, OSX, OSv).

1) Feature flags: The ZFS on-disk format was
originally versioned with a linear version number,
which was incremented whenever the on-disk for-
mat was changed. A ZFS release that supported a
given version also must understand all prior ver-
sions.

This model was designed initially for the single-
vendor model, and was copacetic with the OpenSo-
laris goals of community development while main-
taining control over the essentials of the prod-
uct. However, in the open development model of
OpenZFS, we want different entities to be able to
make on-disk format changes independently, and

then later merge their changes together into one
codebase that understands both features. In the
version-number model, two companies or projects
each working on their own new on-disk features
would both use version N+1 to denote their new
feature, but that number would mean different things
to each company’s software. This would make it
very difficult for both companies to contribute their
new features into a common codebase. The world
would forever be divided into ZFS releases that
interpreted version N+1 as company A intended,
and those that interpreted it as company B intended.

To address this problem, we designed and im-
plemented “feature flags” to replace the linear ver-
sion number. Rather than having a simple ver-
sion number, each storage pool has a list of
features that it is using. Features are identified
with strings, using a reverse-DNS naming conven-
tion (e.g. com.delphix:background destroy). This
enables on-disk format changes to be developed in-
dependently, and later be integrated into a common
codebase.

With the old version numbers, once a pool was
upgraded to a particular version, it couldn’t be
accessed by software that didn’t understand that
version number. This accomplishes the goal of on-
disk versioning, but it is overly restrictive. With
OpenZFS feature flags, if a feature is enabled but
not actually used, the on-disk information reflects
this, so software that doesn’t understand the feature
can still access the pool. Also, many features change
the on-disk format in a way that older software
can still safely read a storage pool using the new
feature (e.g. because no existing data structures
have been changed, only new structures added).
OpenZFS feature flags also supports this use case.

2) LZ4 compression: ZFS supports transparent
compression, using the LZJB and GZIP algorithms.
Each block (e.g. 128KB) is compressed indepen-
dently, and can be stored as any multiple of the
disk’s sector size (e.g. 68.5KB). LZJB is fairly
fast and provides a decent compression ratio, while
GZIP is slow but provides a very good compression
ratio. In OpenZFS, we have also implemented the
LZ4 compression algorithm, which is faster than
LZJB (especially at decompression) and provides
a somewhat better compression ratio (see Figure
1). For many workloads, using LZ4 compression

29

Fig. 1. Compression speeds and ratios compared (single core)

is actually faster than not compressing, because it
reduces the amount of data that must be read and
written.

3) Smooth write throttle: If the disks can’t keep
up with the application’s write rate, then the filesys-
tem must intervene by causing the application to
block, delaying it so that it can’t queue up an
unbounded amount of dirty data.

ZFS batches several seconds worth of changes
into a transaction group, or TXG. The dirty data
that is part of each TXG is periodically synced
to disk. Before OpenZFS, the throttle was imple-
mented rather crudely: once the limit on dirty data
was reached, all write system calls (and equivalent
NFS, CIFS, and iSCSI commands) blocked until
the currently syncing TXG completed. The effect
is that ZFS performed writes with near-zero latency,
until it got “stuck” and all writes blocked for several
seconds.[4]

We rewrote the write throttle in OpenZFS to
provide much smoother, more consistent latency, by
delaying each write operation a little bit. The trick
was to find a good way of computing how large the
delay should be. The key was to measure the amount
of dirty data in the system, incrementing it as write
operations came in and decrementing it as write i/o
to the storage completes. The delay is a function
of the amount of dirty data (as a percentage of the
overall dirty data limit). As more write operations
come in, the amount of dirty data increases, thus
increasing the delay. For a given workload, this
algorithm will seek a stable amount of dirty data
and thus a stable delay. Crucial for easy understand-
ing of the system, this works without taking into
account historical behavior or trying to predict the

Fig. 2. Histogram of write latencies (log/log graph)

future. This makes the algorithm very responsive
to changing workloads; it can’t get “stuck” doing
the wrong thing because of a temporary workload
anomaly.

As a result of this work, we were able to reduce
the latency outliers for a random write workload by
300x, from 10 seconds to 30 milliseconds (meaning
that 99.9% of all operations completed in less than
30 milliseconds). (See Figure 2.)

IV. FURTHER WORK

Here we will outline some of the projects that are
in progress.

A. Platform-independent code repository

Currently, code is shared between platforms on
an ad-hoc basis. Generally, Linux and FreeBSD
pull changes from illumos. This process is not as
smooth as it could be. Linux and FreeBSD must
maintain fairly tricky porting layers to translate the
interfaces that the ZFS code uses on illumos to
equivalent interfaces on Linux and FreeBSD. It is
rare that changes developed on other platforms are
integrated into illumos, in part because of the techni-
cal challenges that newcomers to this platform face
in setting up a development environment, porting,
building, etc.

We plan to create a platform-independent code
repository of OpenZFS source code that will make
it much easier to get changes developed on one
platform onto every OpenZFS platform. The goal is
that all platforms will be able to pull the exact code
in the OpenZFS repo into their codebase, without
having to apply any diffs.

30

We will define the interfaces that code in the
OpenZFS repo will use, by explicitly wrapping all
external interfaces. For example, instead of calling
cv broadcast(kcondvar t *), OpenZFS code would
call zk cv broadcast(zk condvar t *). Each plat-
form would provide wrappers which translate from
the OpenZFS zk interfaces to platform-specific
routines and data structures. This will allow the
“Solaris Porting Layers” to be simplified.

The OpenZFS repo will only include code that is
truly platform-independent, and which can be tested
on any platform in userland (using the existing
libzpool.so mechanism). Therefore it will include
the DMU, DSL, ZIL, ZAP, most of the SPA, and
userland components (/sbin/zfs, libzfs, etc). It will
not include the ZPL, ZVOL, or vdev disk.c, as these
have extensive customizations for each platform. A
longer-term goal is to split the ZPL into platform-
independent and platform-dependent parts, and in-
clude the platform-independent part in the OpenZFS
repo.

For more information, see the slides and video
from the talk at the 2013 OpenZFS Developer
Summit[3].

B. Conferences

Continuing the very successful 2012 ZFS Day
and 2013 OpenZFS Developer Summit conferences,
we plan to hold more OpenZFS-centered events.
This will include annual OpenZFS Developer Sum-
mits, as well as more casual local meet-ups. We
will also continue evangelizing OpenZFS at general
technology conferences.

C. Resumable send and receive

ZFS send and receive is used to serialize and
transmit filesystems between pools. It can quickly
generate incremental changes between snapshots,
making it an ideal basis for remote replication
features. However, if the connection between send
and receive processes is broken (e.g. by a network
outage or one of the machines rebooting), then
the send must re-start from the beginning, losing
whatever data was already sent.

We are working on an enhancement to this that
will allow a failed send to resume where it left off.
This involves having the receiving system remember
what data has been received. This is fairly simple,

because data is sent in (object, offset) order. There-
fore the receiving system need only remember the
highest (object, offset) that has been received. This
information will then be used to restart the send
stream from that point.

The one tricky part is that we need to enhance
the checksum that is stored in the send stream.
Currently the checksum is only sent at the end of
the entire send stream, so if the connection is lost,
the data that was already received has not been
verified by any checksum. We will enhance the send
stream format to transmit the checksum after each
record, so that we can verify each record as it is
received. This will also provide better protection
against transmission errors in the metadata of the
send stream.

D. Large block support

ZFS currently supports up to 128KB blocks. This
is large compared to traditional filesystems, which
typically use 4KB or 8KB blocks, but we still see
some circumstances where even larger blocks would
increase performance. Therefore, we are planning
to add support for blocks up to at least 1MB in
OpenZFS.

We expect to see an especially large perfor-
mance benefit when using RAID-Z, especially
with very wide stripes (i.e. many devices in the
RAID-Z group). RAID-Z breaks each block apart
and spreads it out across all devices in the RAID-Z
group. Therefore, under a random read workload,
RAID-Z can deliver the IOPS of only a single
device, regardless of the number of devices in the
RAID-Z group. By increasing the block size, we
increase the size of each IO, which increases the
effective bandwidth of the random read workload.

This is especially important when scrubbing or
resilvering, which in the worst case creates a ran-
dom read workload. By increasing the block size,
we raise the lower bound of the scrub or resilver
time. For example, consider a RAID-Z group with
eight 1-TB disks that can do 100 random reads per
second. With 128KB block size, in the worst case
we could resilver one drive in 186 hours (1TB *
8 drives / 128KB block size / 100 IOPS). Whereas
with 8MB block size, in the worst case we could
resilver a drive in 2.8 hours. This corresponds to
a rate of 104MB/second, which is close to the

31

typical maximum sequential transfer rate of hard
drives, thus matching the performance of LBA-
based resilver mechanisms.

V. PARTICIPATION

OpenZFS exists because of contributions of every
type. There are a number of ways you can get
involved:

If you are working with ZFS source code, join the
developer mailing list[1]. Post there to get design
help and feedback on code changes.

If your company is making a product with Open-
ZFS, tell people about it. Contact admin@open-
zfs.org to put your logo on the OpenZFS website.
Consider sponsoring OpenZFS events, like the De-
veloper Summit. If you have enhanced OpenZFS,
work with the community to contribute your code
changes upstream. Beside benefiting everyone using
OpenZFS, this will make it much easier for you
to sync up with the latest OpenZFS enhancements
from other contributors, with a minimum of merge
conflicts.

If you are using OpenZFS, help spread the word
by writing about your experience on your blog or
social media sites. Ask questions at the OpenZFS

Office Hours events. And of course, keep sharing
your suggestions for how OpenZFS can be even
better (including bug reports).

VI. CONCLUSION

ZFS has survived many transitions, and now with
OpenZFS we have the most diverse, and yet also
the most unified, community of ZFS contributors.
OpenZFS is available on many platforms: illumos,
FreeBSD, Linux, OSX, and OSv. OpenZFS is an
integral part of dozens of companies’ products.[5] A
diverse group of contributors continues to enhance
OpenZFS, making it an excellent storage platform
for a wide range of uses.

REFERENCES

[1] Mailing list: developer@open-zfs.org, see http://www.open-zfs.
org/wiki/Mailing list to join.

[2] Office Hours, see http://www.open-zfs.org/wiki/OpenZFS
Office Hours

[3] Developer Summit, see http://www.open-zfs.org/wiki/OpenZFS
Developer Summit 2013

[4] Old ZFS write throttle, see http://blog.delphix.com/ahl/2013/
zfs-fundamentals-write-throttle/

[5] Companies using OpenZFS, see http://www.open-zfs.org/wiki/
Companies

32

Eric Allman�
AsiaBSDcon�
Tokyo, Japan�

March 13–16, 2013

Bambi Meets Godzilla: They Elope
�

Open Source Meets the Commercial World

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• Long time open source developer (started ~1975)�

‣ INGRES RDBMS (one of the first!)�

‣ syslog, –me (troff) macros, trek, other BSD utilities�

‣ sendmail�

‣ the guy who got U.C. Berkeley to start using SCCS�

• Jobs in academia, commercial, and research�

• Started Sendmail, Inc. in 1998�

‣ One of the early Open Source “hybrid” companies�

‣ Survived the tech crash (but that’s another story)�

• Now at U.C. Berkeley Swarm Lab�

‣ http://swarmlab.eecs.berkeley.edu
2

My Background

33

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• Sendmail started as an early open source project (as
part of BSD), a classic “scratch your itch” example�

• Like most Open Source of the era, it went through
some growth spurts�

‣ Built to solve a single, local problem�

‣ Generalized due to community need�

‣ Got caught up in the Internet explosion�

‣ Remained community-supported, usually with the
assistance of a small group of people (sendmail used the
benevolent dictator model with trusted henchmen, same
as Linux)�

• O’Reilly book made a huge difference

3

Sendmail’s Background

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• At some point, community scaling collapsed�

‣ I no longer had time to do coding due to support
requirements�

‣ Some projects used the RTFM1 approach (i.e., “you’re on
your own”), but that only works with sophisticated,
dedicated users (and a FMTR2)�

‣ Assertion: all successful large Open Source projects get
outside support at some point�

• I wanted to get time to do coding again, which meant
ditching the day job�

• So I started a company�

‣ All I really wanted was a support department

4

The Onset of Success Disaster

1Read the Fine Manual�
2Fine Manual To Read

34

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• You’re a student (parents, grants, day jobs pay)�

• You’re university faculty/staff or at a research lab
(university/grants/company pays)�

• You work at an enlightened company that gives you
“20% time” (company pays)�

• You work at a company with a vested interest in Open
Source�

• You have no funding at all — you pay directly in the form
of your leisure time/sleep/health/relationships

5

Open Source Does Not Exist in a Vacuum

Everyone who writes open source gets outside support

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• Start a foundation, get donations (e.g., Mozilla, Eclipse,
Apache, FreeBSD, ...)�

• Find a patron who will shower you with money�

‣ Hard to do unless you are Bach or Mozart�

• Sell yourself to a company with deep pockets�

‣ Note: they may not have your best interests in mind; may
even just want to shut you down�

‣ Leverage limited if you are the only asset�

• Start your own company (e.g., Sendmail, Red Hat)

6

Models for Monetization

35

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• Foundations insulate you from the day to day pressures
of corporations�

• Foundations do not prevent you from being pressured in
other ways�

• Foundations do take a lot of work to start and keep
running�

‣ Especially not-for-profits�

• You might lose some of the good things (e.g., good
marketing input)�

• Note: this doesn’t count if you already have deep
pockets (Rockefeller, Gates, etc.)

7

A Note About Foundations

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• Developers seldom are also the customers�

‣ Was Open Source’s traditional base; rare now�

• Developer-designed consumer software usually
“unimpressive” to “outright bad”�

‣ Developers don’t think like normal humans (or
communicate well with them on software design)�

‣ This is what Product Managers are supposed to do�

• Examples of other benefits�

‣ “Soft” items such as user documentation�

‣ Front line support (unburden developers)�

‣ Overhead (e.g., system/network maintenance)

8

Assertion: Open Source Needs Commercial Input

36

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• Open source is about building, sharing, flexibility�

‣ Make the world a better place (give back)�

‣ Solve an interesting problem�

‣ Personal development (and perhaps fame?)�

• Commercial is about making money�

‣ Sales guys do not understand how to make money by
giving the product away (“you’re a communist”)�

‣ Immense pressure toward feature creep to keep a
revenue stream going (e.g., Quicken, iTunes)�

‣ If you miss payroll, you’re dead

9

Deep Tension Between Open Source & Commercial

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• Who’s going to pay for product?�

‣ Folks who just want it free? Good luck with that�

‣ Businesses? What size? They buy trust, not just code�

‣ Consumers? Fickle, need polished product�

• Most customers won’t care about open source�

‣ Think like a customer. What are they buying?�

• Open source tends to commoditize a market�

‣ Brings down the unit price�

‣ Suppliers have to move up the food chain

10

Commercial Markets for Open Source

37

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• Completely free, sell something else�

‣ Support, services, documentation, stability, etc.�

‣ Limited economies of scale�

• Free, sell (often vertical) bundles (distro or appliance)�

• Free basic technology, commercial non-open-source
add-ons�

‣ Works best when you have a clean extension model or
can “wrap” OSS in commercial software�

‣ Generally supersets “sell something else”�

• Technology grab (close the software base)

11

Commercial Models for Open Source

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• Starting a company is not about technology�

• It is about:�

‣ Finance (starting with Investors)�

‣ Sales�

‣ Marketing�

‣ Support�

‣ Services�

‣ oh yeah, and some Engineering

12

Starting a Company

Money

Money

Money

Money

Money

Expense

38

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• Engineering driven or Sales/Marketing driven?�

‣ Almost no large company is engineering driven (Google
comes the closest, and it is an anomaly, and changing)�

‣ Investors prefer S/M driven, and they run the board�

• Purely Sales/Marketing driven leads to aberrations, but
it is very hard to avoid this�

‣ Sales always wins in a fiscal crisis�

‣ A fiscal crisis always comes along sooner or later�

‣ Possible exception: when you are sitting on a ton of cash
(e.g., Apple, Google)�

• Sales/Marketing/Finance want short term view,
Engineering wants long(er) term view

13

A Word About Corporate Culture

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope 14

• A brief (and woefully imprecise) comparison of the
lifecycle of an Open Source Project, a Research Project
(non-proprietary, non-military), and a Company�

• Note the similarities —�and the differences

Life Cycles: Open Source, Research, Companies

39

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope 15

The Initial Inspiration

Open
Source

“Scratch an itch”

Research
Project

Ask a question

Company See a revenue opportunity

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope 16

Making It Possible

Open
Source

See if it’s already been done (optional)

Do an architectural design (optional)

Choose language/tools
Start writing code

Research
Project

Research the literature
Get a grant / other funding

Line up grad students

Company

Write a business plan
Line up investors

Figure out corporate culture (optional)

Hire a team

40

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope 17

Birthing the Baby

Open
Source

Do early (0.x) releases
Start building community

Research
Project

Start writing code/researching
Start writing “teasers”

Company
Start building product

Line up early customers
Start trade shows

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope 18

Making it Real

Open
Source

Release 1.0
Address support problem

Got docs? Oops....

Research
Project

Publish or Perish

Company
First release

Scale out sales, support, services

41

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope 19

Growing It

Open
Source

No community? Hang it up
Write the O’Reilly book

Avoid Second System effect (optional)

Release 2

Research
Project

Thesis time
Slaves Students graduate
“Transactions” article(s)

Company

Second release
Push to profitability

First (second?) round of layoffs
Second (3rd, 4th) investment round

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope 20

Next Steps

Open
Source

Throw it to the winds?
Hand over to larger organization?

Commercialize it?
Just keep going?

Research
Project

Ask a question (often suggested by
previous cycle)

Company
“Liquidity Event” and continue

“Liquidity Event” and assimilation
Bankruptcy and die

42

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• Assuming they know everything and insisting on control.
They don’t, and making other’s lives miserable is a good
way to get forced out early�

• Assuming everyone else is more knowledgeable and
has no hidden agendas�

‣ Beware of people who tell you that their field is so arcane
that you can’t possibly understand it. Sometimes it’s true,
but not very often.�

• Obviously, a happy medium is needed

21

Two Mistakes Founders Make

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

�

• Without a doubt, commercial input to open source has
permitted it to take on far larger problems�

• Similarly, good marketing input permits open source to
take on different kinds of problems�

�

• Open source has lost its innocence�

• Corporations emphasize short-term survival (i.e., money)
over technological beauty

22

Some Conclusions

Good News:

Bad News:

43

Copyright © 2014 Eric P. Allman Bambi Meets Godzilla: They Elope

• Believing that they will be able to get back to coding by
starting a company

23

Bonus Third Mistake Founders Make

Thank You

Eric Allman

asiabsdcon-2014 (at) eric.allman.name

Bambi Meets Godzilla Video:
https://www.youtube.com/v/n-wUdetAAlY

44

45

46

47

48

49

50

51

52

53

54

Netmap as a core networking technology ∗

Luigi Rizzo, Giuseppe Lettieri
Università di Pisa

{rizzo,g.lettieri}@iet.unipi.it

Michio Honda
NEC Europe Ltd

michio.honda@neclab.eu

ABSTRACT
netmap is a network I/O framework for FreeBSD and Linux

that provides a 10-fold speedup over ordinary OS packet I/O

mechanisms. netmap uses less than one core to saturate a 10

Gbit/s interface with minimum size frames (14.88 Mpps) or

switch over 20 Mpps on virtual ports of a VALE switch (part

of the netmap module).

In the past two years we have extended the framework in

many ways, and it can now replace native in-kernel software

switches, accelerate networking in virtual machines, and be

used by unmodified applications based on libpcap.

In this paper we give an overview of the design principles

used in netmap, present the current features of netmap and

the VALE software switch, and present some applications

where we have used these systems.

1. INTRODUCTION
In 2010, in response to the advent of software de-

fined networking and the demand for high speed soft-
ware packet processing, we set out to investigate how
to fill the gap between the speed of OS mechanisms
(sockets, bpf etc.) and the requirements of 10 Gbit/s
and faster interfaces. Our goal was to come up with
an I/O framework that was more portable and easier to
use than the various custom solutions proposed at the
time.
The initial result of our work, the netmap frame-

work [9] that we designed in 2011, provided dramatic
speedups to network I/O, over one order of magnitude
for basic packet processing tasks: traffic sources and
sinks, software packet forwarding, monitors. Our first
demonstrators for the effectiveness of our approach were
custom applications, or modifications of existing ones
(such as the userspace version of OpenvSwitch [11]).
Following this initial result, we began to evaluate

how the techniques used in netmap could be general-
ized to accelerate other network-related software func-
tions. We then used netmap to implement a fast soft-

∗The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n.287581
- OPENLAB.

ware switch called VALE [12]; enabled a seamless con-
nection of physical devices and host stack to a VALE
switch; extended the switch to act as a generic network
dataplane [5]; and managed to reach bare metal speed
with virtual machines [13] emulating ordinary NICs.
In parallel with our work, a large number of people

have started to use netmap in research and production,
often providing useful feedback on possible new func-
tionalities.
Today, after a couple of large rewrites of its inter-

nals, netmap, VALE and related tools have become ex-
tremely powerful and simple to use, allowing users to
concentrate on optimizing applications rather than hav-
ing to focus on the low level details of packet I/O.
The goal of this paper is to present the current state

of netmap and VALE, discuss the design decisions we
made, and present their performance.

2. BACKGROUND
The cost of I/O processing, be it for network or stor-

age, have a large per-transaction component, and a
comparatively small per-bit one. Systems and proto-
cols thus try to amortize the former over sufficiently
large amounts of data. The original packet sizes (64-
1518 bytes) chosen for ethernet networks were however
chosen on different criteria. The lower bound was set
to be large enough to allow collision detection on suffi-
ciently long distances in presence of repeaters, but small
enough to avoid too much overhead when sending short
messages. The upper bound was chosen, somewhat ar-
bitrarily, to avoid individual users monopolizing the link
for too long intervals of time.
When moving from 10 Mbit/s to higher link speeds,

the minimum packet size was kept unchanged, mostly
for backward compatibility with existing software. Un-
fortunately this has stretched the maximum packet
rates by three orders of magnitude, resulting in incredi-
bly tight time budgets to process a packet on 10 Gbit/s
links. Considering the framing overhead, these can
carry up to 14.88 Mpps (million packets per second),
or one every 67.2 μs.

55

Even if rates are much lower (0.81 Mpps) with the
largest frames, we cannot ignore such high packet rates:
certain pieces of equipment (notably, switches, routers,
firewalls and intrusion detection systems) will be sub-
ject to uncontrolled input streams and must be able to
deal with worst case conditions.
A solution adopted in the past to cope with high

packet rates is to have the network interfaces (NICs)
split the traffic among multiple receive queues accord-
ing to some criterion (RSS, see [8]), and then assign one
core per queue. But an attacker (or even a legitimate
user) can cause all traffic to go to a single queue, hence
defeating this technique. The real solution to deal with
these packet rates is to make systems more efficient and
performant by reducing processing to the essential.
This contrasts with the approach followed in the de-

sign of network stacks, which normally try to support
a huge number of options and functionalities, resulting
in significant work at runtime to determine the actual
processing requirements.

3. NETMAP
Netmap uses this minimalistic approach to achieve

efficiency. We have presented extensively the netmap
API in previous work [9, 10], so we only recall here the
most important design principles as they relate to the
content of this paper.
First and foremost, the netmap architecture relies

heavily on I/O batching, to amortize certain costs (sys-
tem calls, locking, I/O access, prefetching and pipeline
stalls) at many different layers. In contrast, the socket
API and other software interfaces for packet I/O com-
monly used in the OS tend to deal with one packet at
a time.
Our second design principle is to use a very sim-

ple and uniform representation for packets: netmap
normally uses one buffer per packet, large enough
to hold a maximum sized segment. There are no
flags or options to support specific hardware offloading
features (checksums, segmentation, VLAN tag inser-
tion/removal, etc.). In contrast, typical OS represen-
tations (mbuf, skbuf, NDISpacket) allow splitting a
packet into an arbitrary number of buffers, share them,
and delegate part of the processing to the hardware.
The flexibility that comes from this approach carries
significant runtime costs: at every software layer, even
simply reading a block of data needs to locate the right
buffer and make sure it is contiguous; writes also need
to additionally check that the buffer is not shared, and
duplicate it in case.
This bring us to our third design principle: no dy-

namic allocations. In common network frameworks,
buffers tend to be allocated and freed at least once dur-
ing the lifetime of a packet, thus adding significant costs
to the processing. Conversely, in netmap, all transmit

and receive buffers are allocated only once when the in-
terface is first brought up. Applications then have full
control over them, and it is their responsibility to make
sure that the NIC does not run dry of receive buffers.
Besides saving a recurring cost, this has the side effect
of additional simplifications in the processing code (as
an example, allocation failures cannot occur in the dat-
apath).
As a final strategy, netmap uses memory mapping to

share buffers and metadata between applications and
the kernel. This is done for performance reasons (saving
one data copy in some cases) and also reduces the length
of certain critical paths within the kernel, improving the
potential parallelism.
Memory mapping undeservedly appears in the name

of our framework, but it is by no means the main con-
tributor to its performance: the overall architecture
that exploits batching is by far the most important fac-
tor.

3.1 Programming interface
A netmap application typically goes through three

phases: create a file descriptor and bind it to an inter-
face; move data between the application and the NIC;
and synchronize with the OS to transmit or receive
packets.

3.1.1 Initialization
In netmap, the initialization uses an open() and an

ioctl() to make the binding, plus an mmap() to ac-
cess packet buffers and descriptors. Its basic form is
the following (the three calls are often hidden within a
support library):

struct nmreq nmr = {};

void *mem;

int fd = open("/dev/netmap", O_RDWR);

strcpy(nmr.nr_name, "eth0");

nmr.nr_version = NETMAP_API;

ioctl(fd, NIOCREGIF, &nmr);

mem = mmap(0, nmr.nr_memsize,

PROT_WRITE|PROT_READ, MAP_SHARED, fd, 0);

Binding a file descriptor to a NIC gives access to repli-
cas of the transmit and receive queues of the NIC it-
self (we call these replicas “netmap rings” or rings for
brevity), and direct access to the data buffers, as de-
scribed in Section 3.2. A file descriptor can be bound
to a single TX/RX ring pair, or to all ring pairs associ-
ated with the NIC.
As a side effect, binding also disconnects the NIC

from the host network stack. However the OS is un-
aware of the disconnection, and will still send traffic to
that NIC (and expect to receive from it). These out-
going packets (and incoming ones) are made available

56

netmap_if netmap_ring netmap buffers
+------------+ +------------------+
...	+-->	...	
ni_tx_rings			head
ni_rx_rings			cur
...			tail
+------------+		...	
txring[0] ----+ +------------------+ +---------+			
txring[1] --->...	len flags idx ------->	buffer	
...		ptr	+---------+
rxring[0] --->... +------------------+			
rxring[1] --->...	len flags idx ------> ...		
...		ptr	
+------------+ +------------------+

....... +---------+
|len flags idx ------->| buffer |
| ptr | +---------+
+------------------+

Figure 1: The data structures used by netmap
to share buffers and descriptors between user
applications and the system.

to netmap clients through another ring pair, called the
“host” TX/RX rings.

3.2 Moving data
The open()/ioctl()/mmap() sequence gives access

to the data structures in Figure 1, the most important
one being the netmap ring which includes head and tail
pointers to a circular array of buffer descriptors. “RX”
rings contain packets coming from NICs (or from other
types of port, such as the host stack or VALE ports).
“TX” rings are for sending packets out. Regardless of
the direction, the ring should be thought as a container
for a pool of buffers, whose producer is always the ker-
nel, and the consumer is always the netmap client.
Rings and descriptors have changed slightly in recent

versions, in response to user experience and feedback.
In particular the ring now has three indexes (head,
cur, tail) pointing into it.
tail is always modified by the kernel, which appends

new buffers to the ring as it sees fit; this only occurs
during the execution of a netmap system call.
head and cur can be modified by the consumer (the

user process), but only when a netmap system call is
not executing. Advancing head returns buffers to the
kernel at the next system call.
The role of cur, is to acknowledge new data and indi-

cate the next “wakeup point” without having to return
buffers at the same time. This can be convenient at
times, e.g. when an application needs more time to
complete it processing.
Buffer descriptors (“netmap slot”) are 16 bytes each,

and include a 16-bit length, 16-bit flags, a 32-bit buffer
index, and a pointer.
Netmap buffers are statically allocated by the kernel

and pinned in memory when the file descriptor is bound.

They have indexes ranging from 2 to a given maximum
value (indexes 0 and 1 are reserved); they are contigu-
ous in the user (virtual) address space, but can be ran-
domly scattered in the physical address space, the only
constraint being that each individual buffer must be-
long to a single page. Indexes can be easily mapped to
different addresses in the kernel (through an in-kernel
lookup table) and in user processes (multiple clients can
map the same netmap memory at different addresses).
The pointer is a recent addition that can help save

one data copy when dealing with VALE switches and
clients that expect to build outgoing packets in their
own buffers (there are many such examples, the main
one being virtual machines). To guarantee isolation
among clients, VALE switches need to make a pay-
load copy when moving data from source to destination.
Since the data copy occurs in the context of the send-
ing thread and without holding an exclusive lock, the
source buffer does not need to be pinned, hence we can
use an external buffer as data source (this is only valid
on transmit rings).
Flags were originally used only to request a notifi-

cation on transmission completion, or indicate that a
buffer index had been modified (e.g. swapped with
some other netmap buffer). Completion notifications
are normally posted only lazily for efficiency, but there
are cases (e.g. last transmission before terminating)
where we do want to be notified. Information of buffer
address changes is also important as it may be neces-
sary to reprogram the IOMMU, and certainly to update
the buffer’s physical address in the NIC.
We have now extra flags to indicate whether this slot

refers to a user-allocated buffer, and also support a few
more features:

scatter-gather I/O Virtual machines and bulk data
transfers use Transmit Segmentation Offloading
(TSO) to achieve very high data rates. TSO sends
out very large segments (up to 64 KB and more),
which are too large to fit in a single buffer. We
have then extended the API to support multiseg-
ment packets; the NS MOREFRAG flag is set on all
but the last segment in a packet.

transparent mode Netmap disconnects the NIC from
the host stack, but many applications need to re-
establish the connection for some or all traffic.
This can be done by opening two file descriptors
and manually moving buffers from one side to the
other, but such a common task deserves explicit
(and optimized) support.
NIOCREGIF can request a special mode of oper-
ation where, after netmap processing, all pack-
ets released by an RX ring and marked with the
NS FORWARD flag are passed to the transmit port

57

on the other side (from NIC to host port and vice-
versa).

3.3 Synchronization
System calls are used to communicate the status

of the rings between the kernel and the user process.
Netmap uses ioctl() and select()/poll() for this.
These system calls perform the following two actions:

• inform the kernel of buffers released by the user
process (which has advanced the head index for
this purpose). The kernel in turn queues new pack-
ets for transmission, or makes the buffers available
for reception.

• report new buffers made available by the kernel
(which advances the tail index). This makes
available to the user process additional, empty TX
buffers, or new incoming packets.

The netmap ioctl()s (NIOCTXSYNC and NIOCRXSYNC,
separate for the two directions) are non blocking, and
suitable for use in polling loops.
select()/poll() are instead potentially blocking,

and they unblock when tail moves past the cur index
in the ring. Their support makes netmap file descriptors
are extremely easy to use in event loops.
Netmap system calls are heavily optimized for com-

mon usage patterns. As an example, event loops of-
ten only poll for input events (output tends to be
synchronous in many APIs, but not in netmap); so
select()/poll() by default handle TX rings (with-
out blocking) even if output events are not specified.
As another example, poll() is often followed by a
gettimeofday(); to save the extra system call, netmap
also writes a fresh timestamp in the netmap ring before
returning from a poll.

4. NETMAP INTERNALS
Netmap is implemented as a kernel module and in-

cludes three main parts: the control path (device initial-
ization and shutdown), the datapath (how packet pay-
load is moved from and to the NIC), and synchroniza-
tion (how transmit and receive notifications are passed
around). All of them involve a generic OS component
and a device specific one.

4.1 Source code organization
The netmap source code is split in multiple files ac-

cording to the function: core functions, memory alloca-
tion, device-specific support (one file per driver), emu-
lation over standard drivers, VALE switch, segmenta-
tion, etc. Additionally, we have three common headers:
net/netmap.h contains definitions shared by user and
kernel; net/netmap user.h is for user-only definitions;
dev/netmap/netmap kern.h has the main kernel-only
definitions.

Netmap is designed to support multiple operating
systems (FreeBSD and Linux at the moment) and mul-
tiple versions of them, and we try to retain feature par-
ity at all times. To ease the task, we use the same code
base for both FreeBSD and Linux versions (and possibly
other OSes we will port it to). One file per OS contains
OS-specific functions, such as those to build modules.
In order to avoid an “esperanto” code style, we use a

single family of identifiers and APIs when possible. We
chose the FreeBSD APIs because this was the platform
where netmap has been originally developed, but Linux
would have been an equally reasonable choice. We care-
fully use only APIs that are expected to be available (or
reasonably easy to emulate) on all platforms.
Kernel functions and data structures normally differ

heavily between OSes, but we found that the network-
related functions are reasonably similar. Naming dif-
ferences can often be solved with macros or inline func-
tions to do the remapping. In other cases, small wrap-
per functions do the job with little if any penalty at
runtime.

4.2 Code distribution
Standard FreeBSD distributions already include the

netmap/VALE code and necessary driver support.
Linux distributions have not (yet ?) included our code,
so we need to patch original drivers. Our distribution
includes patches for Linux kernels from 2.6.30 to the
most recent ones (3.13 at the time of this writing). The
Makefile used to build netmap modules has code to fetch
drivers and apply patches before compiling.

4.3 Control path
The OS-specific part of the control path relies on

character devices and ioctl()’s to configure the device,
and mmap() to share the data structures in Figure 1 be-
tween the kernel and the user process.
Memory is only managed by the OS, so the mmap

support has OS-specific functions but no device depen-
dencies. NIOCREGIF instead acts on the configuration
of the NIC, hence its device specific part requires some
programming information for the NIC involved. We
minimize this problem by using the standard device
driver for most of the initialization, with only minor
tweaks (generally simplifications) to the code that ini-
tializes the transmit and receive data structures when
entering netmap mode. The necessary (limited) amount
of programming information for these modifications can
be generally derived from the source code of the original
driver.

4.4 Data path
Moving packets from and to a NIC is time-critical

and must be done very efficiently. Here we cannot rely
on existing driver routines, as they are too generic and

58

inefficient for our purposes. Hence we extend drivers
with two new methods, for the transmit (* txsync())
and receive (* rxsync()) side of the device.
Following the description in Section 3.2, each method

has two sections: one to pass buffers to the NIC (outgo-
ing packets for TX rings, empty buffers for RX rings),
and one to pass buffers to the user process (new buffers
for TX rings, newly received packets for RX rings).
The *sync() methods do require programming infor-

mation for the NIC, but all they need to do is map be-
tween the netmap and internal packet representations,
and access the relevant NIC registers to determine the
evolution of I/O in the NIC. Due to our simple packet
format and the absence of accelerations, also in this case
it is often possible to infer the necessary programming
information from the drivers’ source code.
The *sync() methods are optimized for batching,

and normally invoked in the context of the user pro-
cess during an ioctl(), select() and poll(). Inter-
rupts, in netmap mode, only need to wake up processes
possibly sleeping on a selinfo/wait queue. This has
several useful consequences:

• the placement of interrupt threads and user pro-
cesses has no influence on cache locality (though
it may impact the scheduling costs);

• even under extreme input load the system does not
livelock, as all processing occurs in user threads;

• system load is easy to control through scheduler
priorities;

• interrupt moderation delays can be propagated to
user threads.

4.5 Synchronization
Many systems with the same goal as netmap only

support busy waiting on the NIC to detect transmit
completions or new incoming packets. This avoids de-
lays in notifications, which can be large due to interrupt
moderation (up to 10..100 μs), and handoffs between
interrupt handlers, threads and user processes (up to
several microseconds, if not further delayed by other
higher priority threads). Latency optimization however
comes at high cost: the process doing busy wait causes
full CPU occupation even with little or no traffic.
Netmap does support this option through the

ioctl()s, which always call the corresponding *sync()
method of the underlying device; however this is not the
preferred mode of operation.
In netmap we were aiming at an efficient use of re-

sources, and designed the system to use standard unix
mechanisms for synchronization. This is actually com-
pletely trivial, and only requires to direct interrupt
handlers to issue a selwakeup()/wake up() on the
selinfo/wait queue.

The poll handler, netmap poll(), which is part of the
generic code, is heavily optimized for common usage
patterns and programming idioms. We already men-
tioned the non-blocking handling of TX rings even in
absence of requests for output events, or the generation
of fresh timestamps on return. We also try to return
efficiently when unnecessary calls are made (e.g. the
rings already have buffers before the call), skipping the
invocation of the *sync() functions in these cases.

4.6 Native support in device drivers
One of the key design principles in netmap is to make

as few as possible modifications to the system. This es-
pecially applies to device drivers. We hook into drivers
in three places:

device attach where we simply register with the OS
the availability of native netmap support;

queue initialization called when the NIC switches
in and out of netmap mode. Entering netmap
mode, both TX and RX queued are pre-filled with
netmap buffers instead of mbuf/skbufs;

interrupt handlers where we only need to invoke a
selwakeup()/wake up().

All these places are relatively simple to identify in the
existing drivers’ sources, and changes are only a handful
of lines of code.
The *xsync() methods are brand new, but they have

a common template, with the NIC-specific parts being
limited to the parts that access NIC descriptors and
queue pointers. To decouple the netmap code from ven-
dor drivers, the *xsync() and any other new code is in
an external file #include’d by the driver. Patches to
the original driver and patches are clearly identified in
#ifdef DEV NETMAP / #endif sections.

4.7 Netmap emulation on standard drivers
We have only implemented native support for a small

number of NICs. The benefits of netmap are mostly for
fast devices (10 Gbit/s) or slower CPUs, and this re-
duces the number of candidate NICs. The number is
further reduced because we found (after the fact!) that
many “fast” NICs are barely able to reach 20-30% of the
peak packet rate, due to their own hardware limitations.
Hence providing native support for them was pointless.
Likewise, we have not dealt with devices with undocu-
mented architecture or programming information, as it
would be difficult to provide a reliable implementation.
For devices without native netmap support, we have

recently added a netmap emulation mode that works
over unmodified drivers. This permits to experiment
with the netmap API on any network device. Provided
the hardware is not otherwise crippled, it also gives
some performance advantage over other I/O methods,

59

although much more limited than a the native netmap
API.
The performance gains in emulation come mostly

from batching, and from bypassing the whole socket
layer. On the transmit path we also save the alloca-
tion overhead with a simple trick: we hold an extra
(counted) reference to the the mbufs/skbufs queued
for transmission, so when the driver frees them, no ac-
tual deallocation occurs. In order to receive notifica-
tions of transmission completions without hooking into
the interrupt handler, we use another trick: we register
a custom deallocator for the buffers, and once every few
slots (say, every half ring) we leave the buffer with only
one reference. On these buffers, the transmit comple-
tion causes a call to our deallocator, which we handle
as an interrupt notification, and use to mark as free all
preceding buffers in the ring.
As a final optimization, mbuf/skbufs in the transmit

ring can be made to point to the netmap buffers, thus
removing the need for a data copy.
With these solutions, netmap emulation over an Intel

85299 NIC gives about 4 Mpps per core, peaking at
around 12 Mpps with 3 cores. This is 2-3 times faster
than ordinary sockets, although not as fast or efficient
as native netmap mode on fast NICs.
On the receive side, we intercept the input handler

that normally passes packets to the host stack. Our
handler queues the mbufs in a temporary queue and
acts as if an interrupt had been received, issuing a
selwakeup()/wake up(). We cannot unfortunately op-
timize allocations or copies as we do on the transmit
side. Consequently, receive performance does not scale
equally well. On the same Intel NIC, we measured up
to 4..6 Mpps depending on the input patterns.

4.8 Extra buffers
Support for zero-copy is with no doubts one of the

most appealing features of netmap, and the preallo-
cation of transmit buffers suits well to systems where
packets are processed to completion without intermedi-
ate queueing. Sometimes, though, incoming traffic must
be held for some reason (slow output devices, waiting for
additional information, shaping). A recent extension to
netmap permits the request of additional buffers (even
in large amounts) during the NIOCREGIF call. These
are returned as a linked list of buffers, and applications
can use them to replenish the receive queues if incoming
packets cannot be used immediately.

5. VIRTUAL PORTS AND SWITCHES
The netmap API proved so effective that we soon

wondered how it could be used as a generic interpro-
cess communication mechanism. Since the initial ab-
straction was that of a network interface, our next step

has been to build a software switch, called VALE (for
VirtuAl Local Ethernet).
In its original version, VALE behaves as a learning

ethernet bridge, and as such it distributes incoming
packets to its output ports depending on the destination
MAC address. The forwarding table is learned dynam-
ically, and broadcast is used when the destination is
unknown.
VALE is implemented by the same kernel module that

implements netmap. Applications access a NIC or a
port of a VALE switch exactly in the same way, the
only difference being the name passed to the NIOCREGIF
call. A name of the form valeXX:YY attaches the file
descriptor to port YY on switch XX (both created dy-
namically if they do not exist), otherwise it refers to a
NIC.
The only difference, from a user’s point of view, is

that each VALE port uses a separate memory region,
whereas NICs (and host stack ports) all use the same
common memory region. The practical implication is
that one can do zero-copy forwarding between NICs
and/or the host stack by simply swapping buffers in
the rings, whereas connecting VALE ports requires an
actual data copy.
The difference is not arbitrary and comes from two

reasons. First and foremost, clients of a switch (virtual
machines, typically) do not necessarily trust each other
and should not be able to interfere or see others’ traf-
fic. Of course we use memory protection mechanisms
for that, but underneath we have the choice between
remapping pages from one space to another, or copy-
ing data. However, altering page tables is extremely
expensive in multicore machines as it requires to notify
all cores in the system.
The second reason for using copies is that when de-

livering data to multiple ports (multicast, broadcast or
unknown destinations), we need to either copy or ref-
erence count the buffers. The latter would introduce
huge complications in buffer management so we resort
to copying also in this case.
Despite the cost of copying, VALE has a very high

throughput: on a modern i7 CPU, we reach up to
20 Mpps for short frames, and 70 Gbit/s for 1500 byte
frames, from one input to one output. Even higher
throughput is achieved when using multiple rings on
each port, or multiple sender to the same destination

5.1 VALE internals
To reach this level of performance, VALE is designed

to exploit batching heavily, and to this purpose it pro-
cesses packets in three stages: input prefetching (to
amortize memory access delays); destination lookup (to
help building output batches); and output queueing (to
amortize locking overhead). The details are described
in [12].

60

All the work in VALE forwarding is performed in the
context of the sending thread, and copying data to the
output port is one of the most expensive operations.
To improve parallelism, even output queueing is further
split in three stages. We first quickly reserve slots in
the output ring, under lock. Then multiple senders can
work in parallel, each one on its own portion of the ring,
to copy packets from source to destination. Finally,
the lock is re-acquired and notifications to the receiving
process are sent in the proper order.
This organization has a significant impact on

throughput: we can now move traffic from multiple
sources to the same destination at over 70 Mpps, com-
pared to the 20 Mpps we could achieve with the previous
architecture.
But speed is not the only benefit of this new organiza-

tion: the fact that data access is now lockless simplifies
the overall locking design, and also allows the sender
process to block (e.g. because of a page fault). As a re-
sult, we can now source data from buffers that are not
wired in RAM, such as generic user-allocated memory.
This new possibility is what led to the introduction of
a pointer field into the netmap slot (see Section 3.2).

5.2 Netmap Pipes
Pipes are a widely used Unix IPC mechanism, and

there are many variants of this concept, including
AF UNIX sockets, pseudo ttys, and the loopback and
epair network interfaces.
A netmap pipe is identified by a base name and pipe

ID, and is made of two netmap ports connected by a vir-
tual crossover cable. A VALE switch with two ports is
functionally almost completely equivalent to a netmap
pipe.
A real netmap pipe, however, has a peculiarity: its

two endpoints share the same memory space, which is a
natural choice since all traffic is bound to be seen by the
other endpoint. Not having to make copies, learning or
forwarding decisions, a netmap pipe is incredibly fast,
peaking at around 90 Mpps irrespective of packet sizes.
A netmap pipe also shares memory with all pipes and

ports with the same basename. This is done specifically
to enable one common task: software demultiplexing
(Figure 2)
Many packet processing tasks in fact need to dis-

tribute input traffic to a number of different processing
modules, either for scalability or for application spe-
cific requirements. Demultiplexing is sometimes sup-
ported by the hardware, as it happens with modern
multi-queue NICs with Receive Side Scaling (RSS) sup-
port: these include filters that use exact match patterns
or hash functions to split input traffic among queues.
The VALE switch also performs a form of demulti-

plexing, but the assumptions on which it operates (un-

+----------+
| |<--> worker
| |

NIC <-->| demux |<--> worker
| |
| | . . .
| |
| |<--> worker
+----------+

Figure 2: The use of netmap pipes for soft-
ware demultiplexing. All connections are bidi-
rectional and can use the netmap API, possibly
over the same memory region.

trusted communicating parties) and the location within
the kernel affect its efficiency and ease of use.
Netmap pipes sharing memory with an interface make

it extremely easy and efficient to build such demulti-
plexers as a user process, and let them communicate
with others. Depending on the requirements, the demux
process can chose to use shared memory (and zero-copy)
between the interfaces and the NIC, or different address
spaces to retain isolation among same or all processes.

5.3 Attaching NICs and host stack to VALE
Software switches normally interconnect virtual

ports, NICs and the host stack. Attaching the latter
two to a VALE switch can be trivially done by userspace
process, but that incurs additional thread handoffs and
delays. Hence in recent versions of VALE we incorpo-
rate this functionality in the switch itself. When a NIC
is attached to a VALE switch, it is put in netmap mode,
and both the NIC and the host sides are connected to
two ports on the switch. The traffic coming from NICs
or from the host stack now may be processed within
kernel threads (NAPI, ithreads, softirq handlers).
The use of netmap mode for the interconnection of

the switches is fundamental to achieve good perfor-
mance. While a native Linux or FreeBSD bridge barely
reaches 2 Mpps a VALE switch using a single core and
two NICs can forward traffic at over 12 Mpps (with
further improvements being possible by removing the
unnecessary memory copy that the code does at the
moment).

5.4 Programmable VALE switches
By default a VALE switch implements a learning eth-

ernet bridge: on each packet the source MAC address
is looked up to update the forwarding table, and then
the destination address is used to compute the output
port. The dataplane architecture described in the previ-
ous sections makes it sure that relevant packet payload
is close to L1 cache when needed, and that the actual
queueing and copying is taken care of in an efficient way.

61

The forwarding decision, in the end, is just a simple
and small function that does not need to know anything
about the dataplane. As such, it was straightforward
to add programmability to a VALE switch and let it
run a different function. In the current implementation,
kernel modules can register with a VALE switch and
replace the default forwarding function with a custom
one, while using the data plane for efficiently moving
data around.
We have used this mechanism for several examples,

including a port demultiplexer [5], and an accelerated
in-kernel OpenvSwitch.

6. APPLICATIONS
For maximum performance, applications can use the

native netmap API directly. This exploits batching and
zero copy data access. The first applications we wrote to
test netmap (a traffic source, a traffic sink, and a simple
interconnection between two interfaces) used this ap-
proach. Results were fantastic, often 10-20 times faster
than equivalent applications using conventional I/O sys-
tems.
This however happened because the applications we

were comparing to were dominated by the cost of I/O,
and our replacement were carefully designed to exploit
batching and the other features that make netmap fast.
Unfortunately, in many cases it is difficult to modify the
inner structure of application code, and we can only re-
place the network I/O routines with direct access to
the netmap API. When we started doing this, results
were a mixed bag, in some cases achieving speedups
of 5-10 times over the original, in others we were lim-
ited to much smaller increases (1.5-2 times). The latter
numbers would be seen as a success in many other cir-
cumstances; but in this case they are an indication that
network I/O is not the main bottleneck in the system.
If the application has other bottlenecks, the direct

use of the netmap API is not worth the effort, and we
are better off following a different approach, namely
emulating some other standard API (such as libpcap)
on top of netmap.

6.1 Netmap-based libpcap
Our initial implementation of netmap provided a very

primitive library that implemented parts of the libpcap
API. We could then use a subset of libpcap-based appli-
cations on top of our library without recompiling, and
by simply pointing the dynamic linker to our library.
This approach was however too limited and we recently
implemented full netmap support for libpcap.
The set of functions that libpcap exposes to clients is

extremely large and possibly redundant, but internally
the interface with devices is relatively small, and it boils
down to an open and close function, and two methods
to read and write packets.

The read method (similar to pcap dispatch()) takes
as input a callback and a count, and applies the call-
back to incoming packets until the count is reached or
a signal is received. This matches very well the way
netmap works, because we can run callback directly on
the netmap-supplied buffer, and exploit the batching
that is inherent in netmap operation.
The write method (similar to pcap inject()) takes

a pointer to a use-specified buffer and is supposed to
push the packet to the output, so that the buffer can
be reused when the function returns. This is slightly
less efficient for our purposes, because it forces a data
copy and does not directly support batching (though it
might be possible to operate lazily and actually send
packets at the next netmap system call).
An interesting feature of this work is that libpcap

provides filtering support through BPF [7] also for de-
vices (such as netmap) that do not implement it na-
tively.

6.2 Firewalling and dummynet
Firewalls can greatly benefit from high speed network

I/O subsystems. The firewalls implemented within an
OS are often limited in performance by the speed of
the underlying device drivers. As a result, not only
it is hard to tell how fast they could run on top of a
better infrastructure, but it is also difficult to evaluate
the effect of performance optimizations on the firewall
itself.
To address this problem we have made some small

modifications to the ipfw source code so that it can now
be run in user space on top of netmap. This was done
both as a proof of concept – to see how fast we could
run the firewall and the dummynet network emulator –
and also for possible use in production.
The resulting system is made of two parts (see Fig-

ure 3): the filtering function, which in the original
implementation ran in the kernel, and the user inter-
face, /sbin/ipfw. Communication between the two
normally uses a control socket, but in this case both
components run in userspace so we built some glue code
to pass sockopt messages across an ordinary STREAM
socket, running on top of the loopback interface.
The filtering function is normally invoked as part of

the input/output code in the network stack. In our
case we built a simple event loop which monitors two
netmap file descriptors (and the control socket), wraps
the netmap buffers into pseudo mbufs, and invokes the
firewall code on them (Figure 3). Depending on the
outcome the packet is then either dropped, passed to the
output interface (which can be done without copying),
or queued into a dummynet pipe. When this happens,
we make an actual copy of the packet so that the netmap
buffer can be returned to the input ring.

62

+-----------------+ +----------------+
/sbin/ipfw		kipfw
	TCP +----------------+	
	<----------->	glue code
+-----------------+ +----------------+

| |
NIC NIC

Figure 3: The architecture of the userspace ipfw.
A shim layer is in charge of communicating with
interfaces and passing packets to the former ker-
nel component. The control socket is emulated
over a regular TCP connection.

With this arrangement, and connecting the firewall
between two VALE switches, we managed to achieve
over 6 Mpps with a simple ALLOW rule, and about
2.5 Mpps when passing packets through a dummynet
pipe. In both cases, this is about 5 times faster than
the in-kernel implementation. Performance over physi-
cal interfaces should be even higher because we do not
need to do the extra data copy that exists with VALE
switches.
The use of extra buffers should also allow us to im-

prove performance on dummynet pipes by a very large
factor, possibly matching the speed of the pure firewall
part.

7. RELATED WORK
Netmap is neither the only nor the fastest tool for

network I/O. However it is, in our opinion, the most
general and easiest to use solution to the problem of
fast network I/O.
In addition to some proprietary options, there are

three main alternatives to netmap.
Intel’s DPDK [6] is a user library that executes the

device driver in userspace. It provides direct access
to the NIC, with rings and buffers in shared memory
and libraries to manipulate them. DPDK only runs on
Linux, and is essentially limited to Intel NICs, though
commercial support exists for some other NIC. Despite
being developed mostly by hardware vendors, DPDK is
opensource and released under a BSD license. It is pri-
marily focused on performance, and as such it makes ex-
tensive use of CPU and NIC optimizations, comes with
libraries for NUMA-aware memory allocation, and data
structures to support typical network applications. The
optimizations included in DPDK make it extremely ef-
ficient (maybe 50% faster than netmap), but terribly
difficult to use and modify. Also, DPDK mainly only
supports busy wait as a synchronization mechanism, so
applications need a core constantly spinning to monitor
events.

Luca Deri’s DNA [2] is another recent proposal for
fast network I/O. Similar in principle to DPDK, DNA
runs only on Linux and Intel NICs, and brings the de-
vice driver in user space supporting busy wait as the
primary mode of operation. It is often used in net-
work monitoring applications such as NTOP [3]. Per-
formance is similar to that of netmap.
Another fast I/O solution has been proposed by

KAIST with the PacketShader I/O engine [4], a cus-
tom Linux device driver for the Intel 82598 1O Gbit/s
NIC, which uses mechanisms similar to netmap. This
is mostly of historical interest because it is limited to
one OS and one device.
Other older approaches are generally much more lim-

ited in terms of performance, being based on simpler
APIs built on top of standard device drivers. Examples
include Linux PF PACKET and its predecessor, Luca
Deri’s PF RING [1]. These frameworks are similar in
terms of internal architecture to the netmap emulation
mode presented in Section 4.7; note though that emu-
lation is really a last resort and not the preferred mode
of operation.

8. CONCLUSIONS
When we started our work on netmap, we only en-

visioned it as a general purpose tool to replace the ex-
isting slow (libpcap, sockets) or fast but proprietary or
otherwise limited mechanisms for packet I/O.
The project grew beyond our best expectations, and

evolved into a powerful switching infrastructure, en-
abling further research in different areas (such as virtual
machines).
We believe that the part of our work related to I/O

and software switching is mostly complete and stable,
and we are actively working to include it in the rele-
vant software distributions (FreeBSD, Qemu, libpcap,
OpenvSwitch, etc.).
There is still significant work to do in applying the

various techniques used in netmap to the acceleration
of the host stack. This is going to be an incremental
process, which will permit a gradual integration of our
ideas without destabilizing the system too much and
with a careful evaluation of the benefits.

9. REFERENCES

[1] L. Deri. Improving passive packet capture:
Beyond device polling. In SANE 2004,
Amsterdam.

[2] L. Deri, J. Gasparakis, P. Waskiewicz, and
F. Fusco. Wire-speed hardware-assisted traffic
filtering with mainstream network adapters.
Advances in Network-Embedded Management and
Applications, pages 71–86, 2011.

63

[3] L. Deri and S. Suin. Effective traffic measurement
using ntop. Communications Magazine, IEEE,
38(5):138–143, 2000.

[4] S. Han, K. Jang, K. Park, and S. Moon.
Packetshader: a gpu-accelerated software router.
ACM SIGCOMM Computer Communication
Review, 40(4):195–206, 2010.

[5] M. Honda, F. Fuici, C. Raiciu, J. Araujo, and
L. Rizzo. Rekindling Network Protocol Innovation
with User-Level Stacks. ACM CCR, April 2014
(to appear).

[6] Intel. Intel data plane development kit.
http://edc.intel.com/Link.aspx?id=5378, 2012.

[7] S. McCanne and V. Jacobson. The bsd packet
filter: a new architecture for user-level packet
capture. In USENIX’93: Proc. of the USENIX
Winter Conference, pages 2–2. USENIX
Association, 1993.

[8] Microsoft Corporation. Scalable networking:
Eliminating the receive processing bottleneck -
introducing rss. Technical report, Technical
Report, 2004.

[9] L. Rizzo. netmap: A Novel Framework for Fast
Packet I/O. In USENIX Annual Technical
Conference ATC’12, Boston, MA. USENIX
Association, 2012.

[10] L. Rizzo. Revisiting network I/O APIs: the
netmap framework. Communications of the ACM,
55(3):45–51, 2012.

[11] L. Rizzo, M. Carbone, and G. Catalli.
Transparent acceleration of software packet
forwarding using netmap. In Infocom 2012. IEEE,
2012.

[12] L. Rizzo and G. Lettieri. VALE, a switched
ethernet for virtual machines. In Proceedings of
the 8th international conference on Emerging
networking experiments and technologies,
CoNEXT ’12, pages 61–72, New York, NY, USA,
2012. ACM.

[13] L. Rizzo, G. Lettieri, and V. Maffione. Speeding
up packet i/o in virtual machines. In Proceedings
of the ninth ACM/IEEE symposium on
Architectures for networking and communications
systems, pages 47–58. IEEE Press, 2013.

64

65

66

67

68

69

70

71

72

73

74

75

76

OpenBGPD turns 10 years - Design, Implementation, Lessons
learned

Henning Brauer

BS Web Services GmbH

Abstract

The Border Gateway Protocol, BGP, is being

used on almost all core routers at ISPs and some

enterprises to announce reachability of own and

downstream networks and learn about reacha-

bility of foreign networks. Thus, every of these

routers builds a map of the internet from his

point of view. The resulting routing table ap-

proaches 500000 entries now.

In 2004, I started working on a new BGP

implementation which later became known as

OpenBGPD. 2014 marks its 10th anniversary, a

good opportunity to look at Design and Imple-

mentation as well as the lessons learned over

the last 10 years.

1 Introduction

BGP4, the only BGP version in widespread

use today, has been defined in RFC 1771 from

1995. Several extensions followed, the base

protocol has been unchanged.

In 2004, the world looked quite a bit dif-

ferent than today. The ”full bgp table” had

less than 200000 entries, compared to almost

500000 today. The router market was domi-

nated by Cisco, with Juniper beginning to show

up. If you wanted to run a router based on free

software, you pretty much had to use Zebra -

which lives on under the name quagga.

At work, I was running Zebra on OpenBSD

- and had lots of problems with it. In the end it

was just not reliable enough, despite me fixing

several bugs in it. I had to realize that Zebra had

fundamental design problems which weren’t

easily fixable, foremost a central event queue -

when zebra was very busy, the ”send keepalive

message” events could sit in the queue for so

long that the neighbors would drop sessions due

to lack of a keepalive. And it uses threads.

I started to think about implementing a new

BGP daemon. And I made the mistake of talk-

ing about it to some other OpenBSD develop-

ers, which from that point on kept prodding me.

Talking to them, foremost Theo de Raadt and

Bob Beck, we quickly had a basic design and I

eventually started coding.

2 Basic Design

Quite clearly we want a privilege seperated

BGP daemon - principle of least privilege. One

needs root permissions to open the tcp listeners

on port 179, and one needs root to alter the ker-

nel routing table. So we need a parent process

running as root.

To talk BGP to the neighbor routers no spe-

cial privileges are required. It was clear from

the beginning that one thread per neighbor was

not the way to go, or threads at all - they just

make things very comlicated and hard to debug,

while often being way slower than seperate pro-

cesses using IPC - locking of shared memory

77

regions is everything but simple and definately

comes at a cost. One process per peer seemed

to be overkill too, tho - so an event-based ses-

sion engine, handling the BGP sessions to the

neighbors, using non-blocking I/O it is.

Processing all the route information learned

from neighbors, building up the map of the in-

ternet, should be seperated from the session

handling. So the session engine (SE) handles

session setup and teardown, keepalive handling

and the various timers associated with the ses-

sion, but doesn’t process any routing informa-

tion - it just hands it off to a third process, the

Route Decision Engine (RDE).

The RDE processes all routing information,

decides on eligibility and preferences of the

routes it learned, to build the Routing Infor-

mation Base (RIB), from which it builds up its

view of the ”best” (in terms of BGP) routing ta-

ble (by selecting the ”best” route from the RIB,

aka the options it got) or, in BGP speak, For-

ward Information Base (FIB).

The ”best”route per destination is then trans-

mitted to the parent process, which talks to the

kernel and modifies the kernel routing table ac-

cordingly.

In this model, the SE and the RDE can run

chrooted and unprivileged.

3 Integrated Approach

Zebra and quagga follow a design approach

where they have a central daemon, zebrad /

quaggad, which talks to the kernel, and per-

protocol daemons implementing the routing

protocols. That is, last not least, a price for

portability - the interface to the kernel routing

tables isn’t standarized, and the implementa-

tions differ widely.

I never realy believed in ”take a generic

Unix, add a BGP speaker, and you have a

proper core router” - there’s more to it. Instead

of doing lots of magic in a central daemon -

like handling preferences of OSPF versus BGP

routes, we changed the kernel side.

OpenBSDs kernel routing table now has

route priorities, so that we can have multiple

routes to the same destination. The naming is

slightly unfortunate since lower numbers mean

higher priority. If there is a route to a given des-

tination from OSPF and BGP, both ospfd and

bgpd will insert their route to the kernel rout-

ing table with different priorities - by default,

32 for OSPF and 48 for BGP. The kernel picks

the OSPF route because of the priority, and if

that route gets removed or is marked down, it’ll

take the BGP route. Without that functional-

ity in the kernel, by some means userland dae-

mons need to decide which route to insert - i.

e. if ospfd learns a route to a given destina-

tion and figures there already is a BGP route, it

needs to overwrite it, and when ospfd removes

that route, bgpd needs to re-insert its one - or a

daemon all routing daemons talk to (like quag-

gad/zebrad) had to do it. We don’t need that,

fortunately.

4 Non-Blocking I/O

File descriptors, network connections are pre-

sented as such through the socket layer, are usu-

ally blocking in Unix. One calls write() on a

file descriptor with a given amount of data to

be written, and the write call will only return

when the entire data has been written out or a

permanent error has been encountered. If not

all data can be written out at once, write() will

sleep until it can go on, the process is blocked

for that time.

While these semantics are really nice to work

with for easy clients and servers that handle one

socket/fd at a time, it is absoliutely not what

we want in the session engine, since then a sin-

gle slow peer could block the entire session en-

gine and last not least can prevent keepalives

to be sent out in time, which in turn makes the

peers drop the connection. Thus, we need non-

blocking sockets.

78

When switching a socket to non-blocking,

a write (or read, or anything similar) call will

never block, but immediately return as soon

as it had to sleep. That can happen before it

has written out all data, it signals the caller the

amount of data written and it is the caller’s duty

to get the remaining data written out at a later

point.

Instead of just implementing non-blocking

I/O for bgpd I decided to abstract and wrote the

buffer framework, which takes care of keeping

unwritten data in a buffer per socket to be re-

tried later, reads into a read buffer and generally

abstracts the socket handling.

5 Messaging

We still need the 3 processes to communicate

with each other. Some form of IPC, some inter-

nal messaging. Once again, instead of a quick

implementation for bgpd, I went for a frame-

work which I called imsg, building up on top

of the buffer framework. It supplies pretty easy

to use primitives to send and receive structured

messages between the processes. It can work

over almost any form of socket connection, be

it a socketpair on the local machine or a tcp

connection, potentially to another host.

Investing the time to make this a proper

framework paid out. I used it again a bit later

to implement ntpd - and now, 10 years later, the

evolved imsg framework moved to libutil and

is in use by no less than 25 daemons and pro-

grams in OpenBSD base.

6 kroute

A routing daemon obviously needs to interface

with the kernel routing table. bgpd doesn’t only

need to insert routes, it also needs the kernel

routing table to decide on eligability of routes

it learns - foremost, it needs to make sure it can

actually reach the nexthop (gateway) on that

route.

Again, I went for a framework. Variants of

it are being used by the other routing daemons

that showed up after bgpd in OpenBSD: ospfd,

ospf6d, ripd, ldpd, dvrmpd - and snmpd, which

isn’t a routing dameon.

kroute fetches the kernel routing table on

startup using the sysctl(3) interface. It listens

on the routing sockets to learn about any 3rd

party updates and keeps its copy in sync. When

bgpd itself wants to add, remove or change a

route, it does so against the kroute copy of the

kernel routing table, and kroute is responsible

for promoting the changes to the kernel.

This design has a nice side effect: we can

run ”decoupled”. That means that bgpd fetches

the kernel routing table into kroute, but changes

bgpd makes aren’t promoted back into the ker-

nel. And since the kroute view can be in-

spected using bgpctl, one can check what bgpd

would do to the kernel routing table without ac-

tually touching it - once everything looks like

it should, bgpd’s kroute view and the kernel

routing table can be coupled, which means that

bgpd pushes the changes to the kernel routing

table all at once. Coupling and decoupling can

happen any time.

7 BGP messages

The BGP protocol itself is pretty simple, it only

knows about 4 message types: OPEN, UP-

DATE, NOTIFICATION and KEEPALIVE. A

fifth one, RREFRESH, was added later and is

an extension.

OPEN initiates a new BGP session. UP-

DATE contains the actual routing data. A NO-

TIFICATION is an error message, upon recep-

tion of such a message bgpd must tear down

the affected session. KEEPALIVEs are sent in

regular intervals.

A BGP message consists of a marker - 16

bytes of all-ones, a length field and the type.

The rest of the payload is message type depen-

dant.

79

8 Session Engine: establishing new
BGP sessions

To establish a bgp session, a BGP speaker must

open a tcp connection to the neighbor/peer in

question on port 179 and send an OPEN mes-

sage. That message contains various parame-

ters for the session, last not least the AS num-

ber of the BGP speaker. It also contains a list

of (optional) capabilities of the BGP speaker.

If the peer is fine with all the parameters in

the OPEN message, it responds with an OPEN

message itself, otherwise it sends a NOTIFI-

CATION. That mechanism is also used for ca-

pability negotiation: if the peer doesn’t like one

of the capabilities we announce, it must send

a NOTIFICATION back quoting the capabil-

ity it doesn’t like, we then disable that capabil-

ity for that session and don’t announce it again

on the next attempt. The same scheme works

the other way around, if we receive an OPEN

message with an unsupported capability, an AS

number that doesn’t match the config or the like

we must send a NOTIFICATION back.

The capability negotiation is one of the areas

where real life surprises: some Cisco systems

will send a ”unsupported capability” NOTIFI-

CATIONs back without actually including the

capability it doesn’t like, violating the RFCs

and making it imossible for us to determine

which of the announces capabilities is the cul-

prit here. The only way to deal with such a bro-

ken system is to disable capability announce-

ments alltogether upon reception of such a NO-

TIFICATION. It is then up to the admin to man-

ually figure out the offending capability and

manually disable it in the config file.

9 Session Engine: session handling

Once we have the BGP session established,

route information is exchanged over it. When

the session drops, the connection is assumed to

have vanished - a link might have died. This in

turn means that we must remove all routes we

learned from the peer in question from our RIB

and in turn the selected (”best”) routes from

that peer from the FIB and thus the kernel rout-

ing table.

To detect a dead session, BGP uses so called

hold time. If we do not receive any message

from the peer within the hold time, we must

drop the session. The hold time is one of the pa-

rameters exchanged with the OPEN message,

it’s typically 90 or 180 seconds. We use timers

per session, one for the hold time. It is reset to

the negotiated hold time every time we receive

a message from the peer, if it ever reaches 0 we

must drop the connection.

To make sure we send a KEEPALIVE when

needed we have another timer per session, the

keepalive timer. It is reset to one third of

the hold time every time we send a message

to the peer, and when it expires, we send a

KEEPALIVE. That also means that we don’t

need to send KEEPALIVEs if UPDATEs hap-

pen frequently enough.

To keep track of the session state BGP im-

plements a Finite State Machine, FSM. A FSM

has defined states and a set of actions, and state

transitions in response to said actions. The

FSM is defined in RFC 1771, but has a bug

there - a missing transition. Despite me no-

tifying the RFC author and him acknoledging

the missing transition, the RFC has never been

fixed.

A session can be in one of 6 states, plus a 7th,

intermediate one only shortly there while set-

ting up a new session. Initially, every session

is in state IDLE, which means that we won’t

attempt to connect to the neighbor and won’t

accept a session from him either. Usually, that

session goes into CONNECT quickly, which

means we try to open a connection to the neigh-

bor. If that fails or the session is configured to

be passive, we go into the ACTIVE state, where

we will accept a connection from the neighbor

but won’t try to establish one ourselves. Non-

passive sessions will start yet another timer, the

80

ConnectRetry timer, when we enter the AC-

TIVE state, to go back into CONNECT once

it expires. When the tcp connection is estab-

lished we send our OPEN message and the ses-

sion goes to OPENSENT, upong reception of

the neighbor’s OPEN message we continue to

OPENCONFIRM, and once the first UPDATE

or KEEPALIVE is exchanged the session is ES-

TABLISHED.

Any UPDATE message received is passed

onto the RDE verbatim, minus the BGP header,

but with our own little header. The same goes

vice versa, routing updates from the RDE are

passed verbatim, as far as the payload goes,

to the peer in question - and resetting the

keepalive timer upon sending, of course.

10 Route Decision Engine

The RDE parses the route update information it

gets from the SE, applies filters which can mod-

ify attributes or cause the route to be dropped

entirely. If the route is eligible, which foremost

means its nexthop is reachable, the RDE adds,

removes or updates it in the RIB.

Since changes to the filter would only affect

newly learned routes, most BGP implementa-

tions, including ours, implement ”soft recon-

fig”, which means that we store the routing in-

formation learned from the peers verbatim so

that we can re-apply filters.

The RIB stores the routes per destination,

and decides which one is the best according to

the algorithm RFC 1771 defines, which minor

extensions (that pretty much every implemen-

tation has). This best route is then entered into

the FIB and thus into the kernel routing table

unless running decoupled, and is announced to

downstream peers - if it passes the outbound fil-

ters toward the peer in question.

11 Route Servers

Especially on exchange points everybody hav-

ing a BGP session to everybody doesn’t scale

all that nicely. While our bgpd has no problem

with a lot of sessions, many of the commercial

routers do.

In these scenarios one typically uses router

servers. These do not actually route traffic

and run bgpd in decoupled mode, there is no

point to touch the kernel routing table at all. A

route server learns routes from all its peers, de-

cides on a ”best” one per destination, and an-

nounces those to all peers again, typically with-

out adding its own AS number to the AS path

(”transparent AS”). That means that each par-

ticipant at the exchange point just needs a ses-

sion to the route server (or rather, one to each

route server, there are typically two for redun-

dancy) instead of each router to each router.

Since router operators typically want some

more control over whom they learn routes from

the route servers tag the learned routes with in-

formatio where they learned them from etc us-

ing so-called communities, and the participants

can filter based on these, and they can send

communities with their own announcements, e.

g. causing the route servers to not announce

this route to specific ASes or the like. That

leads to a problem: if the route server has a

route from peer A selected as best route to the

given destination, and the route is marked to not

be announced towards peer B, peer B will re-

ceive no route to that destination at all instead

of the second best one. The way around that is

a seperate RIB per peer, which of course costs

quite a bit of memory and processing power.

12 filters

I quickly implemented the filters in a proof-of-

concept style when we had pretty much every-

thing else done. I knwe they were slow, and

I took a wrong decision - one global ruleset

81

instead of filter blocks being applied to peers,

which makes it even slower. In most scenar-

ios the slow filters don’t hurt too much, since

one typically doesn’t have a big ruleset. How-

ever, for route servers at big exchange points,

things are different - the ruleset for DECIX, the

world’s biggest exchange point in Frankfurt,

Germany, is several hundred thousand lines

long.

I never considered the filters final, and we

pretty quickly were clear that it’s not just an

implementation issues, but the global vs filter

blocks decision was wrong, so reimplement-

ing filters would require configuration changes.

But even knowing all that, we didn’t get around

to rewrite the filters so far, which has cost us

some installations at exchange points.

13 ToDo

OpenBGPD is a mature and very stable BGP

implementations, used in a lot of places all over

the world, including very critical ones. How-

ever, there is always room for improvement.

The filters finally need to be rewritten. Clau-

dio and I know how, but keep not managing to

actually get to it - lack of time, mostly.

I would love to see some autoaggregation to

happen somewhere between bgpd and the ker-

nel routing table. Half a million prefixes in the

v4 table use up a fair amount of kernel mem-

ory, searches (route lookups) become more ex-

pensive, and due to the size of the table caches

aren’t as effective as we’d like. Aggregating at

that level means that we only need to look at

the nexthop, neighboring routes with the same

nexthop can be aggregated, even if they are to

different ASes - the kernel routing table doesn’t

care about that. In most scenarious such an au-

toaggregation would get the kernel routing ta-

ble to less than 100000 entries. The culprit of

course is with changes to a route covered by

such an autoaggregated one, we might have to

break up the aggregate if the nexthop changes.

And the aggregation algorithm needs to be fast,

since changes are very frequent.

14 Acknowledgments

As pretty much everything in OpenBSD, bgpd

development is a group effort with many other

developers involved. The majority of the code

has been written by Claudio Jeker and myself.

My trip to AsiaBSDcon has been funded by

the conference.

15 Availability

bgpd is part of OpenBSD since the 3.5 release.

This paper and the slides from my presenta-

tion will be availabe from the papers section on

http://www.bulabula.org

and be linked from OpenBSD’s paper section

on

http://www.openbsd.org/papers

82

83

84

85

86

87

88

89

90

VXLAN and Cloud-based networking with
OpenBSD

Reyk Floeter (reyk@openbsd.org)

March 2014

Abstract

This paper introduces the new vxlan(4) driver in the
upcoming OpenBSD 5.5 release and illustrates some
of the upcoming features in the area of Software De-
fined Networking (SDN). Today’s dominance of VM-
based infrastructures has heavily influenced the net-
working realm. The “Cloud” caused vendors to in-
troduce a number of new protocols, technologies and
methodologies. Despite the buzz, they had to adopt
the paradigm shift to split physical and virtual infras-
tructures: the traditional network is used to intercon-
nect physical hosts (hypervisors or Virtual Machine
Monitor (VMM)) and the virtual network is used to
interconnect virtual machines. The Virtual eXtensible
LAN (VXLAN) protocol allows to run “virtual over-
lay networks” and eliminates some of the limitations of
traditional IEEE 802.11Q Virtual LAN (VLAN). It is
an IP/UDP-encapsulated tunnelling protocol for over-
laying layer 2 networks over layer 3 networks which
is used in the VMware world and between virtual
switches like Open vSwitch or the Cisco Nexus 1000V.
The vxlan(4) driver allows to create or join these net-
works without depending on such vswitches and it is
very useful to run PF, relayd or OpenBSD’s numerous
VPN services in such environments.

1 Introduction

The first implementation of vxlan(4) for OpenBSD
was written by David Gwynne (dlg@openbsd.org) who
wanted to connect OpenBSD systems to a VMware in-
frastructure and the Cisco Nexus 1000V. The imple-
mentation, called vxland[2], is a userland daemon that
uses the tun(4) network tunnel pseudo-device to ex-
change layer 2 packets with the kernel network stack.
Although this is a reasonable approach, a kernel-

based implementation was a much more desirable so-
lution. After a discussion with David Gwynne, it was
concluded that OpenBSD should have a driver that
works more like gif(4) or vlan(4). A driver that can
be configured with ifconfig(8) without the need for an

additional daemon. The design & implementation of
the vxlan(4) driver was started and it turned out to
be simpler task implementing it in the kernel because
of the existing infrastructure of OpenBSD’s network
stack.

2 Design & Implementation

The VXLAN protocol is defined in an Internet
Draft[4]. The standard is neither finished nor officially
released but it is already widely deployed with current
networking products. The initial implementation of
the vxlan(4) driver was based on draft-mahalingam-
dutt-dcops-vxlan-04, while the current version at the
time of this writing is version draft-mahalingam-dutt-
dcops-vxlan-08[4]. The differences between these ver-
sions include formatting and clarifications, but no
changes to the protocol itself.

91

2.1 Protocol Overview

The VXLAN protocol provides layer 2 tunnelling over
IP with UDP datagrams. Each vxlan interface uses a
24-bit VXLAN Network Identifier (VNI) that distin-
guishes multiple virtualized layer 2 networks and their
tunnels between identical tunnel endpoints. Once
configured, the interface encapsulates and decapsu-
lates Ethernet frames in UDP datagrams that are ex-
changed with tunnel endpoints. The default UDP port
for VXLAN traffic that has been assigned by IANA is
4789, but some older implementations use the port
8472.

The UDP datagrams include a header that carries
the 24bit VNI, the ”valid VNI” flag, and some reserved
flags and fields that must be set to zero on the transmit
side and ignored on the receiving side. The header is
defined in the Internet Draft and implemented as the
following C structure:

struct vxlan_header {

u_int32_t vxlan_flags;

#define VXLAN_FLAGS_VNI 0x08000000

#define VXLAN_RESERVED1 0xf7ffffff

u_int32_t vxlan_id;

#define VXLAN_VNI 0xffffff00

#define VXLAN_VNI_S 8

#define VXLAN_RESERVED2 0x000000ff

} __packed;

As defined by the standard, the header structure de-
fines two 32bit words with some masks and offsets for
the bit operations. Please note that OpenBSD does
not use bitfields in C structures, it is a general con-
vention that exists for both historical and portability
reasons.

In OpenBSD, the VNI is also called Virtual Network
Identifier (vnetid) to use a term that is not specific to
the VXLAN protocol in the general network stack and
configuration parts of the system.

The complete IPv4 transport header is implemented
with the C struct below. Each datagram includes such
a header followed by an encapsulated layer 2 Ethernet
frame of the inner protocol:

#ifdef INET

struct vxlanudpiphdr {

struct ipovly ui_i;

struct udphdr ui_u;

struct vxlan_header ui_v;

} __packed;

#endif

The current implementation only supports Internet
Protocol Version 4 (IPv4) for the outer IP transport
protocol. As VXLAN is normally used in internal dat-
acenter backbone networks, and most vendors only

properly do IPv4, the need for Internet Protocol Ver-
sion 6 (IPv6) didn’t have a priority in the initial imple-
mentation. IPv6 support will be added in the future
and, of course, it is already possible to use any proto-
col or Ethernet type within the tunnel.

2.2 Network Interface

The vxlan(4) interface is implemented as a virtual
Ethernet pseudo-interface using the “cloner” kernel
API. The driver implementation was written from
scratch, but inspired by techniques of the existing
vlan(4) and vether(4) drivers.

The vxlan clone create() function is called when a
new vxlan(4) interface is created, typically after run-
ning the ifconfig vxlanX create command. The
function sets up a new Ethernet interface and regis-
ters it to the kernel. Because it is fully virtual interface
that does not relate to a physical parent, it generates
a random MAC address by calling OpenBSD’s stan-
dard ether fakeaddr() function. Note that the fake
MAC address will change every time the interface is
created, and after boot, but it is possible to use the
ifconfig vxlanX lladdr command to specify a fixed
address. The function also initializes different options
and prepares the driver for multicast operation.
The Maximum Transmission Unit (MTU) is set to

1500 bytes and the “hardmtu”, the hard MTU limit,
to a maximum of 65535 (0xffff) bytes. The outer
protocol headers will take at least 50 extra bytes re-
sulting in an effective MTU of 1550 bytes. For this
reason, most other implementations chose to lower
the VXLAN MTU to 1450 bytes by default, to carry
the encapsulated traffic over interfaces with the de-
fault Ethernet MTU of 1500 bytes. Lowering the
MTU for tunnelling interfaces is the traditional ap-
proach that solved one problem but caused many oth-
ers including path MTU discovery, fragmentation is-
sues etc. When discussing it with Theo de Raadt (der-
aadt@openbsd.org), we decided to take a different ap-
proach with vxlan(4) in OpenBSD: instead of using a
decreased MTU of just 1450 bytes, vxlan(4) defaults
to the full Ethernet MTU. Users should configure a
larger size on the transport interfaces of the VXLAN
Tunnel End Point (VTEP) accordingly.
The latest update 08 of the Internet Draft[4] even

confirmed this decision in section 4.3 of the document:

VTEPs MUST not fragment encapsulated
VXLAN packets due to the larger frame size.
The destination VTEP MAY silently discard
such VXLAN fragments. To ensure end to
end traffic delivery without fragmentation, it
is RECOMMENDED that the MTUs (Max-
imum Transmission Units) across the phys-
ical network infrastructure be set to a value
that accommodates the larger frame size due

92

to the encapsulation. Other techniques like
Path MTU discovery (see [RFC1191 and
[RFC1981]) MAY be used to address this re-
quirement as well.

2.3 Multicast Support

The VXLAN protocol uses unicast and multicast mes-
saging for the communication between peers. If the
configured tunnel endpoint destination is a multicast
address, the vxlan multicast join() function con-
figures IP multicast operation. It retrieves the trans-
port interface that is associated with the source ad-
dress and routing domain, and joins the configured
multicast group on that interface. The in addmulti()

function is called to register the address and to pro-
gram the hardware multicast filters of the specified
network interface accordingly.

The driver additionally registers three interface
hooks: an address hook, a link state hook, and a de-
tach hook. These hooks are used to update the mul-
ticast association whenever a change happened on the
transport interface. The link state hook is used to
forcibly re-register the multicast address on link state
changes - this is not strictly required but fixes an is-
sue with network interface in VMware that can loose
multicast associations after the VM was suspended.

2.4 Bridge Integration

By default, vxlan(4) can be configured with either a
unicast or multicast tunnel endpoint address. If a mul-
ticast address is configured, the tunnel endpoint can
consist of multiple peers that receive messages to the
registered group with an identical VNI. This turns
the VXLAN network into a shared medium - or a vir-
tual Ethernet hub. Each encapsulated packet from
the source VTEP is “broadcasted” to all other tunnel
endpoints in the multicast group.

The VXLAN protocol draft additionally defines
“Unicast VM to VM communication” where a VTEP
should map the outer tunnel IP addresses of remote
endpoints with inner destination MAC addresses.
This way, only packets with an “unknown destina-
tion” are send to the multicast group and packets
with a known destination are directly send to a
mapped tunnel endpoint. It should dynamically learn
the mapping from the outer source IP address and
inner source MAC address of received packets.

Even if the “bridge” term is not mentioned in the doc-
ument, the described behavior matches the function-
ality of a learning bridge. The BSD bridge(4) driver
almost provides the desired functionality: it forwards
packets between multiple endpoints and learns a map-
ping of network interfaces to destination MAC ad-
dresses. The vxlan(4) implementation utilizes this fact

to implement the unicast mapping. The bridge code
has been extended to learn the tunnel endpoint ad-
dress in addition to the outgoing network interface.

The operation is as follows: The driver tags the re-
ceived mbuf with the outer source IP address using
the PACKET TAG TUNNEL tag. If the tag is present, the
main bridge learning function bridge rtupdate() re-
trieves the address from the mbuf and stores it in the
bridge cache, in addition to the receiving network in-
terface. When a packet is send, the bridge will look
up the destination MAC address in the bridge cache
and decides to either send it to a found unicast ad-
dress or to broadcast it to all interfaces on the bridge.
If the destination is a unicast address, and a tunnel
endpoint address is found in the bridge cache, the
bridge output() function tags the mbuf with the ad-
dress and sends it out through the mapped interface.
Finally, the vxlan output() function will look up the
tag and the stored endpoint address to either send
the packet to the configured multicast group or the
retrieved endpoint IP address.

The configured VXLAN port is used as the UDP
destination port unless the IFF LINK0 flag is set; the
original source port of the learned tunnel endpoint is
used in this case.

The described mechanism is enabled if the vxlan(4)
interface is a member of a bridge(4) interface. The
vxlan(4) driver will check if the interface is associated
to a bridge and set or get the mbuf tag accordingly.
The vxlan(4) interface can be the only interface that
is configured on the bridge(4). But the trick also
works in a “normal” bridge configuration with mul-
tiple local vxlan- or non-vxlan network interfaces. If
vxlan(4) is not associated to a bridge and configured
with a multicast destination address, it will fall back
to the default multicast- or “Ethernet hub”-mode as
described earlier.

The changes of the bridge(4) code have been de-
signed in a way that is independent from vxlan(4)
. The implementation provides a generic way
to store tunnel endpoint addresses as an abi-
trary sockaddr by allowing a driver to set or
get the PACKET TAG TUNNEL tag using the new
bridge tunneltag(), bridge tunneluntag() and
bridge tunnel() API functions.

2.5 Send and Receive

In addition to the generic bridge integration, the
vxlan(4) driver requires minimal changes in the
network stack. Only two hooks are used for the
send and receive functions vxlan output() and
vxlan lookup().

On the sending side, the registered Ethernet driver

93

vxlanstart() callback sends every packet from the
transmit queue with the vxlan output() function.
The function prepends the VXLAN, UDP and IP
headers to the Ethernet frame, retrieves the tun-
nel endpoint address, updates the IP/UDP check-
sums and sends the UDP packet with ip output()

as IP RAWOUTPUT.

The integration on the receiving side is a bit less ele-
gant because OpenBSD does not provide a pluggable
interface to register UDP servers in the kernel. The
receive function vxlan lookup() is directly called in
udp input() if at least one vxlan(4) interface is config-
ured on the system; this hardcoded hook was inspired
by the existing IPsec “UDP encapsulation” receiv-
ing path. The lookup function validates the VXLAN
header and tries to find a configured interface that
matches the UDP destination port, vnetid and routing
domain of the received packet. If no vxlan(4) interface
is found, the packet is returned to the stack for further
processing, otherwise it is consumed by the vxlan(4)
interface and the inner Ethernet packet is decapsu-
lated and fed into ether input().

Calling vxlan lookup() for every received UDP
packet introduces an overhead for UDP traffic if at
least one vxlan(4) interface is configured. An alterna-
tive implementation would call the receiving function
after the PCB hash lookup of the UDP sockets and tie

it into the socket code, similar to the pipex l2tp *

code path. This approach has not been implemented;
it would cause an increased complexity and more de-
pendencies in the network stack. The implementation
of a generic and abstracted interface for kernel-based
UDP “servers” would provide another solution.

2.6 ioctl(2) Interface

The vxlan(4) interface is configured using the
standard Ethernet ioctls and the tunnel con-
figuration options. It uses the existing tun-
nel ioctls SIOCSLIFPHYADDR, SIOCDIFPHYADDR,
SIOCGLIFPHYADDR, SIOCSLIFPHYRTABLE and
SIOCGLIFPHYRTABLE from gif(4) and gre(4) to
configure the tunnel endpoint addresses. The
IFPHYADDR ioctls have been extended to include an
optional port in the supplied sockaddr. The new
ioctls SIOCSVNETID, SIOCGVNETID, SIOCSLIFPHYTTL

and SIOCGLIFPHYTTL have been added to configure
the vnetid and an optional non-standard multicast
TTL.

3 Configuration Examples

The first example creates an interface in the non-
standard unicast mode, which does not involve any
multicast communication:

ifconfig vxlan0 tunnel 192.168.1.100

192.168.1.200 vnetid 5

ifconfig vxlan0 10.1.1.100/24

The next example creates a vxlan(4) interface in the
default multicast mode with the local source IP ad-
dress 192.168.1.100, the destination multicast group
239.1.1.100 and the vnetid 7395:

ifconfig vxlan0 tunnel 192.168.1.100

239.1.1.100 vnetid 7395

ifconfig vxlan0 10.1.2.100/24

Adding the previous interface to a bridge will enable
the learning of tunnel endpoint addresses and enable
the dynamic multicast and unicast mode:

ifconfig bridge0 create

ifconfig bridge0 add vxlan0 up

The VXLAN interface can be used like any other Eth-
ernet interface in OpenBSD with network features like
Packet Filter (PF), carp(4) or services like dhcpd.

4 Portability and other
Implementations

Because of the minimal dependencies in the net-
work stack, the vxlan(4) driver should be easily

94

portable to other the BSDs. The author knows
no porting efforts at present. There are other im-
plementations of VXLAN that supposedly work un-
der FreeBSD and NetBSD, but none of them was
written as a “traditional” BSD network interface
driver. In addition to the least-known vxland[2],
there are Linux drivers that have been ported to these
BSDs, including “upa/vxlan”[5] and “ovs-vxlan” of
the Open vSwitch[7] stack. Interoperability between
OpenBSD’s vxlan(4) and Open vSwitch on Linux has
been intensively tested during the development of the
driver.

5 Future Work

In addition to vxlan(4) itself, future work includes im-
proved Cloud-networking capabilities in OpenBSD.

5.1 The vxlan(4) driver

The vxlan(4) driver is enabled and usable in OpenBSD
but can be improved for future releases. One impor-
tant task is support for IPv6 as the IP transport pro-
tocol. Additionally, further improvements in the mul-
ticast support are possible. Ongoing changes in the
Internet Draft[4] have to be adopted and the handling
of IP fragmentation has to be updated according to
the latest clarifications in draft 08.
A generic abstracted API for kernel-based UDP

servers would allow to improve the receive-side of
vxlan(4) , IPsec UDP encapsulation and potentially
pipex.

5.2 NVGRE

An competing protocol is Network Virtualization
using Generic Routing Encapsulation (NVGRE), a
Microsoft-driven overlay network protocol that is us-
ing GRE instead of UDP as the transport protocol.
NVGRE is not supported by OpenBSD at present, but
the existing gre(4) driver, the applied changes to the
bridge(4) code and the ifconfig(8) interface provide all
of the requirements for NVGRE. The gre(4) driver
would need additional support for GRE keys to hold
the NVGRE header and vnetid, the additional virtual
network segmentation and the required hooks for the
bridge tunnel tag. The implementation of NVGRE
would be trivial but has been abandoned because con-
figuring it for interoperability testing on the Power-
Shell of Windows Server 2012 turned out to be a time-
consuming task that seemed to be beyond my abilities.

5.3 SDN and NFV

SDN is a term that is used for many different pro-
tocols, even VXLAN, but is primarily related to the
OpenFlow protocol. Integrating OpenBSD’s network

stack with OpenFlow, an SDN controller and addi-
tional features is part of the future work. The Net-
work Functions Virtualization (NFV) approach might
be either just another buzzword, or an approach that
suits very well to OpenBSD’s comprehensive network
stack. The initial definition of NFV is not much more
than a description of running network services in “soft-
ware” instead of traditional “hardware” routers, but
NFV evolves into a framework that combines several
software-based networking techniques in virtualized
environments. OpenBSD should be a choice for NFV
and future work will evaluate the possibilities.

6 Appendix

6.1 About the Author

Reyk Floeter is the founder of Esdenera Networks
GmbH[1], a company that develops OpenBSD-based
networking and security products for cloud-based and
software-defined networks. He is located in Hannover,
Germany, but works with international customers like
Internet Initiative Japan Inc. (IIJ) in Tokyo[3]. As a
member of the OpenBSD[6] project, he contributed
various features, fixes, networking drivers and dae-
mons since 2004, like OpenBSD’s ath, trunk (a.k.a.
lagg), vic, hostapd, relayd, snmpd, and iked. For more
than nine years and until mid-2011, he was the CTO
& Co-Founder of .vantronix where he gained experi-
ence in building, selling and deploying enterprise-class
network security appliances based on OpenBSD.

References

[1] Esdenera, Esdenera Networks GmbH, http://

www.esdenera.com/.

[2] David Gwynne, vxland, https://source.eait.

uq.edu.au/svn/vxland/.

[3] IIJ, Internet Initiative Japan Inc., http://www.

iij.ad.jp/.

[4] K. Duda P. Agarwal L. Kreeger T. Sridhar M.
Bursell C. Wright M. Mahalingam, D. Dutt,
VXLAN: A Framework for Overlaying Vir-
tualized Layer 2 Networks over Layer 3 Net-
works, http://tools.ietf.org/html/draft-

mahalingam-dutt-dcops-vxlan-08, February
2014.

[5] Ryo Nakamura, upa/vxlan, https://github.com/
upa/vxlan/.

[6] OpenBSD, The OpenBSD Project, http://www.

openbsd.org/.

[7] Open vSwitch, An Open Virtual Switch, http://
www.openvswitch.org/.

95

96

Nested Paging in bhyve

Neel Natu
The FreeBSD Project
neel@freebsd.org

Peter Grehan
The FreeBSD Project
grehan@freebsd.org

Abstract
Nested paging is a hardware technique used to reduce

the overhead of memory virtualization. Specifically, this

refers to Intel EPT (Extended Page Tables) and AMD

NPT (Nested Page Tables). Nested paging support is

available in bhyve starting from FreeBSD [1] 10.0 and

provides useful features such as transparent superpages

and overprovisioning of guest memory. This paper de-

scribes the design and implementation of nested paging

in bhyve.

1 Introduction

Intel and AMD have introduced extensions to the x86 ar-

chitecture that provide hardware support for virtual ma-

chines, viz.

• Intel Virtual-Machine Extensions (VMX) [2, 3]

• AMD Secure Virtual Machine (SVM) [4]

The first generation of VMX and SVM did not have

any hardware-assist for virtualizing access to the mem-

ory management unit (MMU). Hypervisors had to make

do with existing paging hardware to protect themselves

and to provide isolation between virtual machines. This

was typically done with a technique referred to as

shadow paging [5].

A hypervisor would examine the guest paging

structures and generate a corresponding set of pag-

ing structures in memory called shadow page tables.

The shadow page tables would be used to translate

a guest-virtual address to a host-physical address.

The hypervisor would be responsible for keeping the

shadow page tables synchronized with the guest page

tables. This included tracking modifications to the

guest page tables, handling page faults and reflecting

accessed/dirty (A/D) bits from the shadow page tables

to guest page tables. It was estimated that in certain

workloads shadow paging could account for up to 75%

of the overall hypervisor overhead [5].

Nested page tables were introduced in the second

generation of VMX and SVM to reduce the overhead

in virtualizing the MMU. This feature has been shown

to provide performance gains upwards of 40% for

MMU-intensive benchmarks and upwards of 500% for

micro-benchmarks [6].

With x86 64 page tables there are two types of

addresses: virtual and physical. With nested page

tables there are three types of addresses: guest-virtual,

guest-physical and host-physical. The address used

to access memory with x86 64 page tables is instead

treated as a guest-physical address that must be trans-

lated to a host-physical address. The guest-physical to

host-physical translation uses nested page tables which

are similar in structure to x86 64 page tables.

bhyve has always relied on nested page tables to re-

strict guest access to memory, but until the nested paging

work described in this paper it wasn’t a well-behaved

consumer of the virtual memory subsystem. All guest

memory would be allocated upfront and not released

until the guest was destroyed. Guest memory could not

be swapped to stable storage nor was there a mechanism

to track which pages had been accessed or modified1.

The nested paging work described in this paper allows

bhyve to leverage the FreeBSD/amd64 pmap to maintain

nested paging structures, track A/D bits and maintain

TLB consistency. It also allows bhyve to represent guest

memory as a FreeBSD vmspace and handle nested page

faults in the context of this vmspace.

1Modified and dirty are used interchangeably in this paper

97

Page 0

1

2

3

7

200

1000

7

Virt Phys Attr

Figure 1: Memory Management Unit

The rest of the paper is organized as follows: Section 2

provides an overview of virtual memory management in

FreeBSD on x86 64 processors. Section 3 describes the

virtualization extensions in Intel CPUs. Section 4 in-

troduces Intel’s implementation of nested page tables.

Sections 5, 6 and 7 describe the design and implementa-

tion of nested paging in bhyve. Section 8 presents results

of experimental evaluation of the overhead of nested pag-

ing. Section 9 looks at opportunities to leverage nested

page tables for several useful features.

2 FreeBSD virtual memory management

The FreeBSD virtual memory (VM) subsystem provides

each process with a virtual address space. All memory

references made by a process are interpreted in the

context of its virtual address space. These virtual

addresses are translated into physical addresses by the

MMU as shown in Figure 1.

The MMU performs address translation in fixed-sized

units called pages. The size of a page is machine-

dependent and for the x86 64 architecture this can be

4KB, 2MB or 1GB. The MMU also protects physical

pages belonging to an address space from being writ-

ten to or read from a different address space. All MMU

implementations allow a translation to be marked as

readonly while some implementations can keep track of

which pages have been read or written by the process.

The process address space in FreeBSD is represented

by a vmspace [7]. The address space is divided into

contiguous ranges such that all addresses in a range are

start: 1000

length: 8192

prot: RO

Virt Phys Attr

OBJT_VNODE

/tmp/file

physical
page : 50

physical
page : 201

Figure 2: mmap(/tmp/file, 8192, readonly)

mapped with the same protection (e.g., readonly) and

source data from the same backing object (e.g., a file

on disk). Each range is represented by a vm map en-
try. The physical memory pages provided by the back-

ing object are mapped into the address range represented

by the vm map entry. The backing object is represented

by a vm object. The physical memory pages associated

with the backing object are represented by a vm page.

A vm page contains the physical address of the page in

system memory. This address is used by the MMU in its

translation tables. Figure 2 shows the data structures in-

volved in a readonly mapping of /tmp/file into a process’s

address space.

The physical-mapping (pmap) subsystem provides

machine-dependent functionality to the VM subsystem,

such as:

• Creating virtual to physical mappings

• Invalidating a mapping to a physical page

• Modifying protection attributes of a mapping

Virt Phys Virt Phys

Figure 3: pmap

98

• Tracking page access and modification

Each vmspace has an embedded pmap. The pmap
contains machine-dependent information such as a

pointer to the root of the page table hierarchy.

For the x86 64 architecture the pmap subsystem main-

tains mappings in hierarchical address-translation struc-

tures commonly referred to as page tables. The page

tables are the machine-dependent representation of the

vmspace. The processor’s control register CR3 points to

the root of the page tables.

It is important to note that multiple processors may

have an address space active simultaneously. This is

tracked by the pm active bitmap. Figure 3 depicts a

dual-processor system with a different address space

active on each processor.

2.1 x86 64 address translation

Figure 4: x86 64 address translation

A page-table-page is 4KB in size and contains 512

page-table-entries each of which is 64-bits wide. A page-

table-entry (PTE) contains the physical address of the

next level page-table-page or the page-frame. A page-

table-entry also specifies the protection attributes, mem-

ory type information and A/D bits.

As shown in Figure 4, a 64-bit virtual address is di-

vided into 4 fields with each field used to index into a

page-table-page at different levels of the translation hier-

archy:

• Bits 47:39 index into the page-map level4 table

• Bits 38:30 index into the page-directory pointer ta-

ble

• Bits 29:21 index into the page-directory table

• Bits 20:12 index into the page table

• Bits 11:0 provide the offset into the page-frame

3 Intel Virtual-Machine Extensions

Intel Virtual-Machine Extensions (VMX) provide hard-

ware support to simplify processor virtualization. This is

done by introducing two new forms of processor opera-

tion: VMX root and VMX non-root.

A hypervisor runs in VMX root operation and has full

control of the processor and platform resources. Guests

run in VMX non-root operation which is a restricted en-

vironment.

A guest starts executing when the hypervisor executes

the vmlaunch instruction to transition the processor into

VMX non-root operation. The guest continues execution

until a condition established by the hypervisor transitions

the processor back into VMX root operation and resumes

hypervisor execution. The hypervisor will examine the

reason for the VM-exit, handle it appropriately, and re-

sume guest execution.

The VMX transition from hypervisor to guest is a

VM-entry. The VMX transition from guest to hypervisor

is a VM-exit. VMX transitions and non-root operation

are controlled by the Virtual Machine Control Structure
(VMCS). The VMCS is used to load guest processor

state on VM-entry and save guest processor state on

VM-exit. The VMCS also controls processor behavior

in VMX non-root operation, for example to enable

nested page tables. Of particular importance is the

Extended-Page-Table Pointer (EPTP) field of the VMCS

which holds the physical address of the root of the

nested page tables.

Figure 5: VMX operation

99

Figure 5 illustrates the VMX transitions and the nested

page tables referenced from the VMCS.

4 Intel Extended Page Tables

The x86 64 page tables translate virtual addresses to

physical addresses. This translation is done using page

tables pointed to by CR3. In addition to mapping the

virtual address to a physical address, the page tables also

provide permissions and memory type associated with

the mapping.

When the processor is operating in guest context and

nested page tables are enabled, the physical address that

is the output of x86 64 page tables is treated as a guest-

physical-address. The nested page tables translate this

guest-physical-address (GPA) to a host-physical-address

(HPA). It is the HPA that is driven out on the processor’s

memory and I/O busses. This additional level of address

translation allows the hypervisor to isolate the guest ad-

dress space.

Note that with nested paging enabled there are two dis-

tinct page tables active simultaneously:

• x86 64 page tables pointed to by guest CR3

• nested page tables pointed to by the VMCS

Intel’s implementation of nested page tables is called

Extended Page Tables (EPT). EPT is similar in structure

and functionality to x86 64 page tables. It has same

number of translation levels and it uses the the same bits

to index into the page-table-pages. For example, bits

47:39 of the GPA index into the PML4 table. It also

provides the same protection attributes as x86 64 page

tables.

However, there are some differences.

4.1 Page-table-entry

The most obvious difference between the page-table-

entries in Table 4.1 is that different bit positions are used

to express the same functionality. For example, the dirty

flag is bit 6 in the x86 64 PTE versus bit 9 in the EPT

PTE.

Some differences arise when the x86 64 PTE has

functionality that does not exist in the EPT PTE. Bit 8 in

the x86 64 PTE is used to represent mappings that are

global and are not flushed on an address space change.

There is no corresponding bit in the EPT PTE because

this functionality is not relevant in extended page tables.

The EPT PTE and x86 64 PTE also differ in their de-
fault settings. The execute permission must be explicitly

granted in an EPT PTE whereas it must be explicitly re-

voked in a x86 64 PTE.

Bit x86 64 PTE EPT PTE
0 Valid Read permission

1 Write permission Write permission

2 User/Supervisor Execute permission

3 Write-through cache Memory type[0]

4 Cache disable Memory type[1]

5 Accessed Memory type[2]

6 Dirty Ignore guest PAT

7 Page Attribute Table index Ignored

8 Global Accessed

9 Ignored Dirty

61 Execute disable Suppress #VE

Table 1: Differences between x86 64 and EPT PTEs

4.2 Capabilities
Table 4.2 highlights differences in the capabilities of

x86 64 page tables and EPT page tables.

Capability x86 64 PTE EPT PTE
2MB mapping Yes Optional

A/D bits Yes Optional

Execute-only mapping No Optional

5 Design of nested paging in bhyve

The address space of a typical guest is shown in Figure 6.

This guest is configured with 2GB of system memory

split across two memory segments: the first segment

starts at 0x00000000 and the second segment starts at

0x100000000. The region of the address space between

1GB and 4GB is called the PCI hole and is used for

addressing Memory-Mapped I/O (MMIO) devices. The

guest’s system firmware2 is mapped readonly in the ad-

dress space just below 4GB.

The nested paging implementation in bhyve is based

on the observation that the guest address space is similar

to process address space:

• Guest memory segments are backed by a vm object
that supplies zero-filled, anonymous memory.

• Guest firmware is backed by a vm object that is as-

sociated with the firmware file and is mapped read-

only.

2The guest BIOS or UEFI image

100

Figure 6: Guest address space

• The PCI hole is not mapped. Any access to it from

the guest will cause a nested page fault.

Figure 7 shows the guest address space represented as

a vmspace. The VM subsystem already had the primi-

tives needed to represent the guest address space in this

manner. However, the pmap needed modifications to

support nested paging.

6 pmap modifications

The pmap subsystem is responsible for maintaining the

page tables in a machine-dependent format. Given the

differences between the x86 64 page tables and EPT,

modifications were required to make the pmap EPT-

aware.

6.1 pmap initialization
The pmap was identified as an x86 64 or EPT pmap by
adding an enumeration for its type.

enum pmap_type {

PT_X86, /* regular x86 page tables */

PT_EPT, /* Intel’s nested page tables */

PT_RVI, /* AMD’s nested page tables */

};

struct pmap {

...

enum pmap_type pm_type;

};

OBJT_DEFAULT

size = 1GB

start:

length:

prot:

0x00000000

1GB

readwrite

start:

length:

prot:

0xFFE00000

1MB

readonly

start:

length:

prot:

0x10000000

1GB

readwrite

OBJT_VNODE

size = 1MB

/disk/guest.efi

OBJT_DEFAULT

size = 1GB

Figure 7: Guest vmspace

Prior to the nested paging changes vmspace alloc()
called pmap pinit() to initialize the pmap. vmspace al-
loc() was modified to accept a pointer to the pmap ini-
tialization function.

struct vmspace *

vmspace_alloc(min, max, pmap_pinit_t pinit)

{

/* Use pmap_pinit() unless overridden by the caller */

if (pinit == NULL)

pinit = &pmap_pinit;

}

A new function pmap pinit type was added to initial-

ize a pmap based on its type. In particular the pmap

type is used to ensure that the kernel address space is

not mapped into nested page tables.

int

pmap_pinit_type(pmap_t pmap, enum pmap_type type, int flags)

{

pmap->pm_type = type;

if (type == PT_EPT) {

/* Initialize extended page tables */

} else {

/* Initialize x86_64 page tables */

}

}

int

pmap_pinit(pmap_t pmap)

{

return pmap_pinit_type(pmap, PT_X86, flags);

}

101

Finally the EPT pmap is created as follows.

int

ept_pinit(pmap_t pmap)

{

return pmap_pinit_type(pmap, PT_EPT, flags);

}

struct vmspace *

ept_vmspace_alloc(vm_offset min, vm_offset max)

{

return vmspace_alloc(min, max, ept_pinit);

}

6.2 EPT page-table-entries
Section 4.1 highlighted the differences between EPT
PTEs and x86 64 PTEs. The pmap code was written
to support the x86 64 page tables and used preprocessor
macros to represent bit fields in the PTE.

#define PG_M 0x040 /* Dirty bit */

This would not work for nested page tables because

the dirty flag is represented by bit 9 in the EPT PTE.

The bitmask is now computed at runtime depending
on the pmap type.

#undef PG_M

#define X86_PG_M 0x040

#define EPT_PG_M 0x200

pt_entry_t

pmap_modified_bit(pmap_t pmap)

{

switch (pmap->pm_type) {

case PT_X86:

return (X86_PG_M);

case PT_EPT:

return (EPT_PG_M);

}

}

Note that PG M is now undefined to force compilation
errors if used inadvertently. Functions that used PG M
were modified as follows:

void

some_pmap_func(pmap_t pmap)

{

pt_entry_t PG_M = pmap_modified_bit(pmap);

/* Rest of the function does not change */

}

The same technique was used for all fields in the EPT

PTE that are different from the x86 64 PTE with the ex-

ception of PG U. Section 6.3 discusses the special treat-

ment given to PG U.

6.3 EPT execute permission

bhyve has no visibility into how the guest uses its address

space and therefore needs to map all guest memory with

execute permission. An EPT mapping is executable if

the EPT PG EXECUTE field at bit 2 is set in the PTE.

PG U in the x86 64 PTE represents whether the map-

ping can be accessed in user-mode. PG U is at bit 2

in the x86 64 PTE. The pmap sets PG U if the address

mapped by the PTE is in the range [0, VM MAXUSER -

ADDRESS).

The guest address space is in the same numerical range

as the user address space i.e., both address spaces start at

0 and grow upwards 3. From pmap’s perspective, map-

pings in the guest address space are considered user map-

pings and PG U is set. However, bit 2 is interpreted as

EPT PG EXECUTE in the EPT context. This has the

desired effect of mapping guest memory with execute

permission.

Note that the guest still retains the ability to make its

mappings not executable by setting the PG NX bit in its

PTE.

6.4 EPT capabilities

The original pmap implementation assumed MMU sup-

port for 2MB superpages and A/D bits in the PTE.

However these features are optional in an EPT imple-

mentation.
The pm flags field was added to the pmap to record

capabilities of the EPT implementation.

#define PMAP_PDE_SUPERPAGE (1 << 0)

#define PMAP_EMULATE_AD_BITS (1 << 1)

#define PMAP_SUPPORTS_EXEC_ONLY (1 << 2)

struct pmap {

...

int pm_flags;

}

A PT X86 pmap sets pm flags to PMAP PDE -
SUPERPAGE unconditionally. A PT EPT pmap sets

pm flags based on EPT capabilities advertised by the pro-

cessor in a model specific register.

The pmap already had code to disable superpage pro-

motion globally and it was trivial to extend it to check

for PMAP PDE SUPERPAGE in pm flags.

6.5 EPT A/D bit emulation

The x86 64 page tables keep track of whether a map-

ping has been accessed or modified using the PG A and

PG M bits in the PTE.

3VM MAXUSER ADDRESS implies an upper limit of 128TB on

guest physical memory

102

The VM subsystem uses the accessed bit to maintain

the activity count for the page. The dirty bit is used

to determine whether the page needs to be committed

to stable storage. It is important to faithfully emulate

the A/D bits in EPT implementations that don’t support

them4.

A straightforward approach would be to assign unused

bits in the EPT PTE to represent the A/D bits. Dirty

bit emulation was done by making the mapping read-

only and setting the emulated PG M bit on a write fault.

Accessed bit emulation was done by removing the map-

ping and setting the emulated PG A bit on a read fault.

Accessed bit emulation required the mapping to be

entirely removed from the page tables with it being rein-

stated through vm fault(). Dirty bit emulation required

differentiating between true-readonly mappings versus

pseudo-readonly mappings used to trigger write faults.

The code to implement this scheme required extensive

modifications to the pmap subsystem [8].

A simpler solution is to interpret the relevant bits in

the EPT PTE as follows [9]: PG V and PG RW are now

assigned to unused bits in the EPT PTE. On the other

hand PG A maps to EPT PG READ and PG M maps

to EPT PG WRITE which are interpreted by the MMU

as permission bits.

PTE bit Interpreted by

PG V 52 A/D emulation handler

PG RW 53 A/D emulation handler

PG A 0 MMU as EPT PG READ
PG M 1 MMU as EPT PG WRITE

Clearing the accessed bit removes read permission to

the page in hardware. Similarly, clearing the modified

bit removes write permission to the page in hardware.

In both cases the rest of the PTE remains intact. Thus,

the A/D bit emulation handler can inspect PG V and

PG RW in the PTE and handle the fault accordingly.

The A/D bit emulation handler can resolve the follow-

ing types of faults:

• Read fault on 4KB and 2MB mappings

• Write fault on 4KB mappings

The handler will attempt to promote a 4KB mapping to

a 2MB mapping. It does not handle write faults on 2MB

mappings because the pmap enforces that if a superpage

is writeable then its PG M bit must also be set [10].

4Hardware support for A/D bits in EPT first appeared in the Haswell

microarchitecture

6.5.1 EPT PTE restrictions:

There is an additional issue with clearing the emulated

PG A. Recall that clearing the emulated PG A actu-

ally clears EPT PG READ and makes the mapping not

readable.

The MMU requires that if the PTE is not readable

then:

• it cannot be writeable

• it cannot be executable unless the MMU supports

execute-only mappings

These restrictions cause pessimistic side-effects when

the emulated PG A is cleared. Writeable mappings will

be removed entirely after superpage demotion if appro-

priate. Executable mappings suffer the same fate unless

execute-only mappings are allowed.

6.6 EPT TLB invalidation
The Translation Lookaside Buffer (TLB) is used to cache

frequently used address translations. The pmap subsys-

tem is responsible for invalidating the TLB when map-

pings in the page tables are modified or removed.

To facilitate this a new field was added to pmap called

pm eptgen. This field is incremented for every TLB in-

validation request. A copy of the generation number is

also cached in the virtual machine context as eptgen.

Just prior to entering the guest, eptgen is compared to

pm eptgen, and if they are not equal the EPT mappings

are invalidated from the TLB.
The pm active bitmap is used to track the cpus

on which the guest address space is active. The bit
corresponding to the physical cpu is set by bhyve on a
VM-entry and cleared on a VM-exit. If the pm active
field indicates that the nested pmap is in use on other
cpus, an Inter-Processor Interrupt (IPI) is issued to
those cpus. The IPI will trigger a VM-exit and the
next VM-entry will invalidate the TLB as previously
described.

struct pmap {

...

long pm_eptgen; /* EPT pmap generation */

};

struct vmx {

...

long eptgen[MAXCPU]; /* cached pm_eptgen */

};

7 bhyve modifications

bhyve has always relied on nested page tables to assign

memory to a guest. Prior to this work, guest memory

103

was allocated when the virtual machine was created and

released when it was destroyed. Guest memory could be

accessed at all times without triggering a fault.

Representing guest memory as a vm object meant that

guest memory pages could be paged out or mapped read-

only by the VM subsystem. This required bhyve to

handle nested page faults. Additionally guest memory

could be accessed only after ensuring that the underlying

vm page was resident.

7.1 Guest memory segments

A guest memory segment corresponds to a vm map en-
try backed by a vm object of type OBJT DEFAULT as

depicted in Figure 7. Each memory segment is backed

by zero-filled, anonymous memory that is allocated on-

demand and can be paged out.

7.2 EPT-violation VM-exit

If the translation for a guest physical address is not

present or has insufficient privileges then it triggers an

EPT-violation VM-exit. The VMCS provides collateral

information such as the GPA and the access type (e.g.,

read or write) associated with the EPT-violation.

If the GPA is contained within the virtual machine’s

memory segments then the VM-exit is a nested page
fault, otherwise it is an instruction emulation fault.

7.2.1 Nested page fault

The nested page fault handler first calls into the pmap

to do A/D bit emulation. If the fault was not triggered

by A/D bit emulation, it is resolved by vm fault() in the

context of the guest vmspace.

Event re-injection A hypervisor can inject events

(e.g., interrupts) into the guest using a VM-entry con-

trol in the VMCS. It is possible that the MMU could

encounter a nested page fault when it is trying to inject

the event. For example, the guest physical page contain-

ing the interrupt descriptor table (IDT) might be swapped

out.

The hypervisor needs to recognize that a nested page

fault occurred during event injection and re-inject the

event on the subsequent VM entry.

It is now trivial to verify correct behavior of bhyve in

this scenario by calling pmap remove() to invalidate all

guest physical mappings from the EPT.

7.2.2 Instruction emulation fault

An instruction emulation fault is triggered when the

guest accesses a virtual MMIO device such as the lo-

cal APIC. To handle this type of fault bhyve has to fetch

the instruction that triggered the fault before it can be

emulated. Fetching the instruction requires walking the

guest’s page tables. Thus bhyve needs to be able to ac-

cess guest memory without triggering a page fault in ker-

nel mode.

This requirement was satisfied by using an existing

VM function: vm fault quick hold pages(). This func-

tion returns the vm page associated with the GPA and

also prevents the vm page from being freed by the page

daemon. vm gpa hold() and vm gpa release() in bhyve

are the convenience wrappers on top of this.

vm fault hold() and superpages The original imple-

mentation of vm gpa hold() called vm fault hold().
vm fault hold() resolved the GPA to a vm page and

called pmap enter() to install it in the page tables. If

there was already a superpage mapping for the GPA then

it would get demoted, the new mapping would be in-

stalled and then get promoted immediately. This resulted

in an inordinate number of superpage promotions and de-

motions.

7.3 PCI passthrough
bhyve supports PCI passthrough so a guest can directly

access a physical PCI device. There were two memory-

related issues that needed to be addressed with PCI

passthrough.

7.3.1 MMIO BARs

Most PCI devices implement a set of registers to con-

trol operation and monitor status. These registers are

mapped into MMIO space by programming the device’s

Base Address Register (BAR). The PCI device only re-

sponds to accesses that fall within the address range pro-

grammed in its BAR(s).

For the guest to get direct access to a PCI device the

physical BAR has to be mapped into the guest’s address

space. This mapping is represented by a memory seg-

ment that is backed by a vm object of type OBJT SG.

These mappings are unmanaged and they do not get

paged out or promoted to superpages.

7.3.2 Direct memory access

A PCI device has the ability to access system memory in-

dependently of the processor. This is commonly referred

to as Direct Memory Access (DMA). A PCI passthrough

104

device is assigned to a guest and is programmed with

guest physical addresses.

This implies that bhyve needs to install the GPA to

HPA translation not just in the EPT but also in the I/O

Memory Management Unit (IOMMU).

Additionally bhyve needs to ensure that the memory

backing the guest address space is never paged out be-

cause the current generation of platforms cannot handle

I/O page faults. This is implemented by calling vm -
map wire() on all memory segments.

7.4 Tunables, sysctls and counters
The following tunables can be used to influence the EPT

features used by bhyve:

• hw.vmm.ept.use superpages: 0 disables superpages

• hw.vmm.ept.use hw ad bits: 0 forces A/D bit emu-

lation

• hw.vmm.ept.use exec only: 0 disables execute-

only mappings

The following sysctls provide nested pmap informa-

tion:

• hw.vmm.ipinum: IPI vector used to trigger EPT

TLB invalidation

• hw.vmm.ept pmap flags: pm flags field in the pmap

• vm.pmap.num dirty emulations: count of dirty bit

emulations

• vm.pmap.num accessed emulations: count of ac-

cessed bit emulations

• vm.pmap.num superpage accessed emulations:

count of accessed bit emulations for superpages

• vm.pmap.ad emulation superpage promotions: su-

perpage promotions attempted by the A/D bit emu-

lation handler

The following bhyvectl counters5 are available per

vpcu:

• Number of nested pages faults

• Number of instruction emulation faults

8 Performance

The experiments described in this section were per-

formed on a system with 32GB RAM and a Xeon E3-

1220 v3 CPU at 3.10GHz. The host and the guest were

both running FreeBSD/amd64 10.0-RELEASE.

5/usr/sbin/bhyvectl –get-stats

8.1 Nested paging overhead
In this experiment the guest was assigned 2 vcpus and

8GB memory. The vcpus were pinned to minimize

scheduling artifacts. The host memory was overprovi-

sioned to eliminate paging artifacts.

The user, system and wall-clock times for make -j4
buildworld in the guest were measured. The results are

summarized in Table 2.

Guest memory User System Wall-clock
Wired 3696 389 2207

Not wired 3704 409 2225

Not wired, A/D bit emulation 3784 432 2276

Table 2: Guest buildworld times in seconds

The buildworld time with guest memory wired estab-

lished the baseline of 2207 seconds (i.e., nested paging

disabled).

The buildworld took 18 seconds longer when guest

memory was not wired and an additional 51 seconds with

A/D bits emulated in software.

8.2 GUPS
Giga-updates per second (GUPS) is a measurement of

how frequently a computer can issue updates to ran-

domly generated memory locations [11].

In this experiment the guest was assigned 1 vcpu and

24GB memory. GUPS was configured with a 12GB

working set and CPU time was measured.

Guest superpages Host superpages CPU time in seconds
Disabled Disabled 500

Disabled Enabled 258

Enabled Disabled 267

Enabled Enabled 102

Table 3: Effect of superpages on GUPS CPU time

Table 3 demonstrates the benefit of transparent super-

page support in nested paging.

9 Future work

Nested paging is a foundational technology that will

influence the design of upcoming features in bhyve.

The vm page activity count and modified state may

be used in live migration to compute the order in which

guest memory is migrated.

Guest memory could be backed by a file which would

be useful when suspending a virtual machine to disk.

105

10 Acknowledgements

Alan Cox and Konstantin Belousov provided guidance
on nested page table support in pmap. John Baldwin
reviewed the use of scatter-gather VM objects for PCI
passthrough. Peter Holm tested the nested paging patch
before it was committed to FreeBSD. Leon Dang did the
artwork in this paper. We wish to thank them all.

References
[1] The FreeBSD Project

http://www.freebsd.org

[2] Intel Virtualization Technology: Hardware Support for Efficient
Processor Virtualization Intel Technology Journal, Volume 10,

Issue 3

[3] Intel 64 and IA-32 Architectures Software Developer’s Manual

[4] AMD64 Architecture Programmer’s Manual Volume 2: System
Programming

[5] AMD-V Nested Paging White Paper
http://developer.amd.com/wordpress/media/2012/

10/NPT-WP-1%201-final-TM.pdf

[6] Performance Evaluation of AMD RVI Hardware Assist
http://www.vmware.com/pdf/RVI_performance.pdf

[7] The Design and Implementation of the FreeBSD Operating
System Marshall Kirk McKusick, George V. Neville-Neil

[8] FreeBSD svn revision 254317

[9] FreeBSD svn revision 255960

[10] Practical, transparent operating system support for super-
pages Juan Navarro, Sitaram Iyer, Peter Druschel, Alan Cox

http://www.usenix.org/events/osdi02/tech/full_

papers/navarro/navarro.pdf

[11] GUPS http://en.wikipedia.org/wiki/Giga-updates_

per_second

106

Developing CPE Routers based on NetBSD:

Fifteen Years of SEIL

Masanobu SAITOH(msaitoh@netbsd.org)∗ Hiroki SUENAGA(hsuenaga@iij.ad.jp)†

March 2014

Abstract

Typical ISPs use customized small routers to connect
their network from customer’s local networks. Such
routers are called CPE, Customer Premises Equip-
ment. We, Internet Initiative Japan (IIJ), also have
own CPE named ’SEIL.’ SEIL is a German word of
rope. SEIL ropes IIJ and its customers together.

The firmware of SEIL is a customized NetBSD. IIJ
has self-manufactured the firmware for 15 years, since
March 1999. We describe about some implementa-
tion and enhancement for NetBSD during SEIL’s 15
years history.

1 The Target environment of
our CPE

Customer Premises Equipments (CPE) are communi-
cation devices, such as Internet access gateways and
routers, deployed in customer’s homes and offices.
There are various customers, so we need to describe
the target customers and environments before enter-
ing detailed discussion.

IIJ is an ISP company and most of its customers
are corporations. Typical corporations use the In-
ternet to communicate with their partners, satellite
offices, and shops such as convenience stores.

Internal communications of corporations definitely
include a lot of confidential information. So our CPE
must have cryptographic functionalities such as IPsec

∗The NetBSD Foundation
†Internet Initiative Japan Inc.

and SSL, and their accelerators as much as possi-
ble. Supporting various secure tunneling protocols
are also important. Our CPE supports PPTP, L2TP,
L2TPv3, IPsec, SSTP, and so on, to satisfy many dif-
ferent requirements of our customers.

Most corporations don’t have enough IP addresses
and use NAPT to connect to the Internet. They also
use IP filters to ensure minimum security. Since there
are a lot of persons and computers in a office, perfor-
mances of NAPT and IP filters are most important
requirements of our CPE.

Such complicated requirements make CPE’s con-
figurations so difficult. IIJ have put efforts to sim-
plify configuration syntax, but there are limitations
to do so. Engineers of IIJ can write configurations,
but most engineers in various corporations can’t do
enough. Thus, IIJ has found one more important
requirement, simple and easy management of a num-
ber of CPEs. The word ’management’ includes some
concepts, configurations, operations, and monitoring.
The name SEIL was selected to show this principle of
management, it is abbreviation of ’Simple and Easy
Internet Life.’

Table 1 shows past CPEs which made to achieve
the mentioned requirements. Each of hardware ar-
chitecture has been changed by the era of network
environment, but core concepts of the CPEs are not
changed. In this paper, we focus on the concepts and
software implementations to realize it. We discuss
about our management framework at first. It is an
important start point of us, and an important dif-
ference between ISP’s genuine CPE and other CPEs.
In technical point of view, the management frame-
work is not a BSD specific topic. But it is important

107

Table 1: Hardware architecture of SEILs
WAN Interfaces LAN Interfaces CPU(Model) Released

128Kbps BRI 10Mbps Ethernet Hitachi SH2(SH7604)@20MHz Aug 1998
1.5Mbps PRI 10Mbps Ethernet Hitachi SH3(SH7709A)@133MHz Dec 1999
128Kbps BRI 100Mbps Ethernet Hitachi SH4(SH7750)@200MHz Oct 2001
1.5Mbps PRI 100Mbps Ethernet Hitachi SH4(SH7750)@200MHz Oct 2001
100Mbps Ethernet 100Mbps Ethernet Hitachi SH4(SH7750)@200MHz Nov 2001
25Mbps ATM 100Mbps Ethernet Hitachi SH4(SH7750)@200MHz Oct 2002
1Gbps Ethernet 1Gbps Ethernet Freescale PowerPC G4(MPC7445)@600MHz Jun 2003
100Mbps Ethernet 100Mbps Ethernet Intel XScale(IXP425)@400MHz Dec 2003

1Gbps Ethernet

USB 3G/LTE Modem 1Gbps Ethernet Cavium Octeon(CN3010)@300MHz Feb 2008

1Gbps Ethernet

USB 3G/LTE Modem 1Gbps Ethernet Cavium Octeon(CN3120)@500Mhz Feb 2008

100Mbps Ethernet

USB 3G/LTE Modem

128Kbps BRI 100Mbps Ethernet Intel XScale(IXP432)@400MHz Oct 2008

1Gbps Ethernet

USB 3G/LTE Modem

1Gbps Ethernet

802.11n Wireless LAN Marvell Kirkwood(88F6281)@1.2GHz Feb 2013

to understand why ISPs have made own CPEs from
scratch. We discuss about extensions and modifica-
tions for NetBSD at second. And we discuss some
knowledge and tweaks to make our daily development
work flows easy and efficient.

2 Management of SEIL

2.1 Central management

Most important motivation of self-manufacturing
CPE is to manage CPEs from ISP politely. The qual-
ity of managing CPEs is one of the quality of Inter-
net connections. Most of CPEs are designed to be
managed by local network managers of a customer.
Of course, we can make a template configuration for
them, we can advice what to do, and so on. But IIJ
thinks that the work of customer should be almost
nothing. Only work is to check reports from ISP and
confirm there is no problem.

We create a management framework to achieve it.
The framework is named SMF, SEIL Management
Framework(Figure 1). It was released in 2003. The
framework has the following behaviors:

1. Zero Configuration. Just power the CPE on,
that’s all.

Figure 1: The SMF system

2. Watch the running status, logs of CPE by re-
sources in ISP.

A lot of our customers use this system to built and
manage complex networks they designed.

The SMF consists of server side system and CPE
side system. IIJ uses NetBSD to create the intelli-
gent CPE side system. The system is named ’recipe
framework’, and is developed using C language, li-
braries and scripting languages. We mainly have used
C languages for many years. In 2013, we began to
use mruby[1], a variant of Ruby scripting language,

108

to control NetBSD based CPE itself. It’s little diffi-
cult for C language to avoid buffer overflows. Using
scripting language can avoid the problem, so we use
it for performance independent part.

2.2 Manageability of UNIX like OS
based CPE

For end users, this is not free UNIX like systems but
CPE. So the following things are important:

easy to understand
Easily and uniformly understandable without
any knowledge of based OS. Easy to understand
what happened. Easy to understand it’s problem
or not. Easy to understand what is a problem.

stability
Not do panic. Strong against attack from others.

automation
Automatically change setting if it can. Usually,
some changes are done by editing files under /etc
on UNIX like OS, and some functions don’t con-
sider changes of other functions. If a change is
deterministic in system wide, it should be done
automatically.

3 Development of SEIL

3.1 Extending device drivers

CPE has a number of network devices that is not
common in desktop operating systems. CPE also has
a naming scheme of the devices that is different from
UNIX culture. IIJ has added some new H/W device
drivers and special if net.if xname handling code.

Some CPE support networking port other
than Ethernet. For example, SEIL supports
ISDN BRI(IPAC-X on a simple device BUS),
3G MODEM(emulates USB serial port), LTE
MDOEM(emulates USB Ethernet device). Most peo-
ples weren’t interested in IPAC-X, so we wrote the
driver from scratch. Most people want the drivers
for 3G/LTE modems, but there are no specification
document. IIJ haven’t had enough document in the

fact, but we have tried to write the device driver and
hold down the ugly BUGs of the 3G/LTE modems.
The modems are managed by userland daemon ’conn-
mgrd’. The daemon manipulates various type of P2P
connections such as ISDN, 3G modem, L2TP, and so
on. 802.11 wireless networking device that supports
AP-mode is also a topic on CPE. NetBSD has its own
802.11 stack, but IIJ has ported vendor genuine, but
buggy, 802.11 wireless support to NetBSD.

IIJ also has modified basic functionalities of
NetBSD’s network device. We can change the de-
vice name via ifconfig. Because port name of the
CPE such as lan1, lan2, are far different from BSD’s
device name such as wm0, em0, bge0, and so on. Of
course, we can translate CPE’s configuration name
to NetBSD device name. If we think about logging,
using existing daemons, to change the device name is
most cost effective way.

There are Ethernet switching devices in CPE.
NetBSD has no framework to manage Ethernet
switching functions such as Port based VLAN, per-
port link status detection, learning table separation.
IIJ wrote simple framework to do this and configura-
tion command named swconfig [2].

We also change queuing strategy of network de-
vices to work with link status detection. For exam-
ple, to queue packets to link-downed network device
wastes mbuf resources though such old packets are
useless. And, it’s sometime dangerous because some
old packet might cause the network trouble. So our
implementation drops the packet as soon as possible
if there were some problems on link state or protocol
state.

There are some pseudo networking device im-
plemented by IIJ. For example, IPsec tunneling
device[2], paravirtualized Ethernet driver for Hyper-
V. FreeBSD also has a Hyper-V driver. There is
no functional difference between FreeBSD’s one and
IIJ’s one. The reason why we implemented a driver is
simple, there was no FreeBSD driver when IIJ needed
it. These are such duplicated implementation, and
IIJ’s implementation is not so special, but some of
these can be useful.

109

3.2 Extending IP Networking stack

The IP networking stack is the most important part
of CPEs. We need both of the routing speed and ad-
ditional functionality. CPE is placed on a border be-
tween the ISP and the customer’s LAN. CPE doesn’t
require very high performance such as 10G Ethernet,
but require to absorb characteristics of each customer
and to maximize the benefits of the ISP services.

Several years ago, IIJ implemented own IP filter
and NAT/NAPT functions named iipf and iipfnat.
NetBSD had an IP filter implementation ipf , how-
ever it didn’t satisfy our requirements. pf and npf
wasn’t born yet. iipf had implemented some ideas to
improve throughput. It will be described in another
paper[2].

Our IPsec stack also has a caching layer on Secu-
rity Policy Database (SPD) and Security Association
Database (SAD). IPsec tunneling is also important
for VPN; many customers prefer Route-based VPN
to Policy-based VPN. This topic will be described in
another paper[2].

A CPE typically uses a very cheap CPU, thus
cryptographic accelerators are very important com-
ponents. IIJ has done many efforts to use the acceler-
ators effectively, and implemented a framework to use
the accelerators. Using accelerators in a C function
(i.e., single kernel context) was possible, but the re-
sulting performance was very slow. So IIJ decided to
separate IP stack into two parts, “before IPsec” and
“after IPsec”. This strategy is same as opencrypt(9)
subsystem and FAST IPSEC(4) stack that stems
from OpenBSD. This framework works fine today, so
IIJ has decided to use it. (Though there were some
minor problems fixed by IIJ, the performance of the
framework is fairly good now.)

A number of network interfaces can be causes of
many problems. For a desktop machine, there are
just a few network interfaces. But for a CPE, there
can be many pseudo network interfaces which pro-
vide various tunnel connections. If some code uses a
simple list to manage the interfaces, it becomes very
slow, and consumes a large amount of memory. For
example, getifaddrs() function uses a large memory
footprint in both of the kernel and userland processes
if there are a lot of interfaces. IIJ has added selec-

tor and cache layers on getifaddrs(). We can get
a list of interfaces which link-state is up by using
getifaddrs up() for example.

There are some common hacks on CPEs, such as
TCP-MSS clumping to avoid the Path MTU Discov-
ery problem and Session Hijacking to create trans-
parent proxy. IIJ has own implementations against
them to satisfy requirements from customers.

3.3 Implementing New Network Pro-
tocols

IIJ has implemented some network tunneling pro-
tocols on NetBSD. PPTP and L2TP protocols are
implemented in NetBSD userland. There is also an
in-kernel cut-through forwarding mechanism named
PIPEX. These functions are already merged to
OpenBSD 1.

We has an implementation of L2TPv3. The
L2TPv3 is a kind of Ethernet encapsulation and tun-
neling protocol described in RFC3931. The L2TPv3
network device acts as a kind of Ethernet device, and
can be added to an Ethernet bridging group. Our
CPE can bridge separated Ethernet segments via an
L2TPv3 network device. If multiple L2TPv3 network
devices are added to one bridging group, the CPE
acts as a virtual Ethernet HUB.

There are also some experimental implementa-
tions of new Internet Drafts. For example, IIJ
has a MAP (draft-ietf-softwire-map-xx) imple-
mentation. Because IIJ is an ISP company, so
we are so interested in new protocols. They are
not a standard protocol yet, but experimental im-
plementations are important to standardize good
protocols. The development of L2TPv3 is one
of successful efforts. It had been started with
a project that develops Internet Draft of L2TPv3
(draft-ietf-l2tpext-l2tp-base-xx).

Most CPEs support the UPnP protocol. IIJ im-
plements UPnP services from scratch. They are com-
pletely different from libupnp based implementations.
They are designed to cooperate with iipfnat and con-
trol iipfnat rules by the UPnP protocol.

1The merge has been done by yasuoka@openbsd.org

110

IIJ implements ’sockfromto’ which is a collec-
tion of extended socket API used in some operat-
ing systems. The typical functions of sockfromto
are sendfromto() and recvfromto(). These func-
tions enable to reduce a complicated usage of bind().
A sending socket which is bound the source port
can cause a unexpected packet arrival to the send-
ing socket. If you used INADDR ANY to receiving
socket, and forgot that the sending socket can receive
packets, some arrival packets may lost during sending
packets. sendfromto() can send packet with specified
source port without calling bind().

3.4 Standing for heavy Ethernet rx in-
terrupts

Traditional BSD system used simple spl mechanism.
A high priority event always obstructs lower prior-
ity events. In CPE case, Ethernet rx interrupt al-
ways obstructs IP Networking stack, routing dae-
mons, user interface, and so on. Especially, live-
lock of IP Networking stack is serious problem for
CPE. IIJ did some efforts to reduce such live-lock. It
was serious problem for IIJ, because the live-lock can
break our centralized management framework.

At first we tried to control interrupt enable/disable
bits, rate control bit of Ethernet devices. What is the
trigger to throttle the interrupts? We tried to add
some probes that detect stall of IP Networking stack.
Checking IP input queue(ipintrq) length, checking
system load(kern.cp time), checking callout timers,
etc, etc..

OpenBSD tell us to control rx buffer works fine, in-
stead of to control the interrupts directly. The idea is
implemented as MCLGETI API of OpenBSD 2. IIJ
has ported the MCLGETI API to NetBSD and does
some performance test. We confirm the MCLGETI
works fine enough by various inspection.

2The API has other motivation that reduce memory usage
on supporting jumbo frames.

4 Daily workflow

4.1 Creating new products

IIJ has created many products. Here is a list of our
common works to create a new product.

• Create plain new port of NetBSD like evbxxx.

• Create customized ramdisk of the product like
install kernel.

• Launch an NTP daemon and measure clock jit-
ter/drifts, and tune a clock parameter if needed.

• Send/Receive various sizes of Ethernet frames.
Frame with 802.1q VLAN tag often reveals MTU
handling problem of Ethernet drivers.

• Check if dmesg buffer (kern.msgbuf) is cleared
after software reboot. If it is cleared on reboot,
fix it not to clear. The buffer is important for
debugging.

• Measure primitive performances such as mem-
ory access. CPU benchmark(INT, FLOAT),
cryptographic benchmark(DES, AES, DH, ..),
system calls benchmark. The performance of
system calls tell us performance of VM(large
copyin/copyout), performance of exception han-
dlers. We often reveal a architecture dependent
problem by system call benchmarks.

• Measure IP routing performances using various
major commercial measuring equipments. Such
measuring equipments are also useful to apply
high network load to the product. The load often
reveals spl bugs.

• Check counters. If an value isn’t visible, add it.
If an counter is not incremented on some cases,
fix it.

• Modify log facility, level and the message. Some
logs’s level are inadequate for users, so change
it. Some log messages might be misunderstood
by users, so modify it or remove it. Some event
is important. If not log message is generated by
the event, add it.

111

• Throttling log. Some logs might be frequently
generated. If it occurred, stability of the system
will be bad.

Some of the works are hard to be done by non-
commercial hackers due to lack of environments,
equipments, and time. If bugs are found, BSD hack-
ers in IIJ sometimes merge the fix for the bugs.

4.2 Debugging NetBSD on small em-
bedded hardware

On developing commercial product, debugging is very
important, and we pay very much costs for it. To
minimize the costs, IIJ has implemented debugging
functionalities for small, embedded devices such as
CPE.

IIJ has customized the syslog daemon. The log ro-
tation mechanism on filesystem is works fine in desk-
top, but it is not always useful in restricted CPE.
To minimize memory usage, our syslogd has inter-
nal ring buffer to remember logs, and user interface
process can get logs via IPC. There are multiple ring
buffer per facilities, and user can configure the size of
each ring buffer. Most important facility is different
for each customers.

A CPE often has no storage device, so there is
no room to dump core files. So our kernel report the
core information of the core files to dmesg buffer. For
example, process name, program counter that causes
an exception, back-trace of the userland process. The
back-trace doesn’t include symbol information, but is
useful enough. MIPS processor has no frame pointer
so the back-trace is not so trusted.

IIJ extended ddb to debugging networking stack.
To print or list socket structure in kernel, To print
the last function who touches a mbuf structure. Due
to NetBSD-current modifies pool framework to sup-
port cache-coloring, some of these function are not
working now. We need to re-design these.

Watch dog timer(wdog) is very important compo-
nent in commercial product. IIJ has implemented
wdog framework, and there are many point to kick
the wdog. There is genuine wdog framework recent
NetBSD, we are surveying it. Configuring wdog is

not difficult, but kick the wdog is difficult. Espe-
cially to live-lock situation requires very sensitive de-
sign. panic() is also difficult situation. We do want
to see the information from panic() and ddb stack
dump, but we do avoid the infinite loop in dump.
We kick the wdog during dump, but there is limit in
the depth of stack. The dump can cause a exception
and start new stack dump. We force cpu reboot in
such situation.

4.3 Following the evolution of
NetBSD

IIJ currently uses NetBSD-6.x as it’s base system.
Past products used NetBSD-1.x and NetBSD-3.x.
Because the evolution of NetBSD is faster than life
cycle of our product lines, leaping into a new NetBSD
become a hard work for us. Though it’s easy to gen-
erate a diffs of our implementation, it’s sometimes
difficult to apply the diffs to a new NetBSD.

Unfortunately the last fifteen years was so tough
years, IIJ has not contributed to BSD commu-
nity enough. Few BSD developers in IIJ have
contributed to the community. For example, ya-
suoka@openbsd.org contributed and has developed
PPP implementation ’npppd’ and in kernel PPP cut
through mechanism ’PIPEX’ now.

As we wrote above, we have implemented some new
functions and have enhanced some current functions,
but a lot of have not merged yet.

5 Conclusion

IIJ has developed own CPE named ’SEIL’ for long
years. The name SEIL was often appeared in
NetBSD developers community in the past, but IIJ
didn’t say much about it. This and [2] are 1st public
articles about IIJ’s past works and knowledges. IIJ
hopes that the articles become some good lessons for
BSD communities.

References

[1] mruby https://github.com/mruby/mruby

112

[2] Masanobu SAITOH and Hiroki SUENAGA, “Im-
plementation and modification for CPE: filter
rule optimization, IPsec interface and Ether-
net switch” In proceedings of AsiaBSDCon2014,
March 2014.

113

114

Deploying FreeBSD systems with Foreman

and mfsBSD

Martin Matuška (mm@FreeBSD.org)

AsiaBSDCon 2014
March 15-16, 2014

Abstract

Foreman is an open source host life cycle management tool that covers the whole de-

ployment process for production-ready physical and virtual systems in multiple datacen-

ters. This includes creating and destroying virtual instances, BMC control of physical ma-

chines, PXE boot over TFTP and embedded Puppet configuration management. Foreman

uses Ruby on Rails and is highly extensible, including the UI. Even though its development

is mainly driven by Red Hat developers, Foreman is by far not just Linux. Combined with

mfsBSD, a toolset for creation of diskless FreeBSD systems, Foreman is capable to deploy

and manage FreeBSD systems.

1 Foreman
Foreman[6] is an open source host life cy-

cle management tool designed to perform

unattended system installations using DHCP,

DNS, and PXE with TFTP. It is capable to

provide automated deployment, configuration

and basic monitoring of physical and virtual

servers. For configuration management, em-

bedded Puppet is part of the package and ba-

sic support for integration with Chef is pro-

vided.

Foreman is a relatively new project with

its 1.0 release dating back to July 2012.

The project is under intense development and

the current release 1.4 integrates many new

features[2].

1.1 Architecture
The core of Foreman is a Ruby on Rails en-

gine with a RESTful API and a web-based

graphical user interface. The core engine it-

self communicates with Compute Resources

and Smart Proxies.

Compute Resources are interfaces to ex-

ternal providers of virtual systems. Commu-

nication with these providers is provided by

the Ruby Cloud Services library fog[1].

Foreman currently (version 1.4) supports

the following Compute Resources providers:

• Amazon EC2

• Google Compute Engine

• Libvirt

• OpenStack Nova

• oVirt/RHEV

• Rackspace

• VMWare

Using these providers Foreman is capable

to automatically create, destroy, inspect and

configure virtual servers and therefore control

their complete life cycle. For physical sys-

115

Figure 1: Foreman Architecture

tems a limited set of management tasks is sup-

ported vi BMC (e.g. power on/off if BMC is

available).

A Smart Proxy is a standalone external

Ruby daemon that is reachable by Foreman

and manages one or more of DHCP, DNS,

TFTP, BMC and Puppet Certification Author-

ity (proxy) services. Smart proxies are Fore-

man’s single point of contact with systems in

target networks. Foreman requires at least one

Smart Proxy for operation. If necessary, it is

possible to operate a Smart Proxy on a Win-

dows system for communication with the MS

DHCP and/or DNS Service.

Foreman and Smart Proxy do not yet

support automated installation on other than

Linux host platforms. A manual installation

of Smart Proxy on a MS Windows system is

supported. The Linux installation is simpli-

fied using a Puppet-based auto-configuration

tool. The author of this document intends to

integrate the Foreman and Smart-Proxy ser-

vices to the FreeBSD ports tree.

1.2 Configuration

Configuration of Foreman is web-based in-

cluding a REST API to read and modify

configuration entries. It provides delegated

user administration with LDAP authentica-

tion support. An extensive set of access rights

can be bundled in ”Roles” that are assigned

to individual users. A basic support for user

groups is provided, but no roles can be as-

signed to a user group yet.

Network data is configured in ”Subnets”,

where references to (different) Smart Proxies

are provided for each configured subnet.

A physical or virtual machine in Fore-

man is represented by an entity called ”Host”.

Each host is a member of zero or exactly one

”Host Group”. Host groups can be nested

and bundle configuration common to a set of

hosts. The main feature of Foreman are freely

configurable inheritable parameters, that can

be defined and/or overridden on host, host

group, operating system (version) or global

levels. These parameters are used to render

116

installation scripts (e.g. kickstart) and are ac-

cessible from Puppet, too. For virtual sys-

tems, Foreman supports creating and destroy-

ing virtual instances and access to these func-

tions is provided via the web-interface.

1.3 Host Deployment Process
To be able to successfully deploy a system,

we need a properly configured host with at

least one assigned DHCP and TFTP proxy.

The host is put into build mode and Fore-

man instructs the responsible DHCP server to

PXE boot based on host’s MAC address. The

system boots an bootable image downloaded

from a Smart Proxy’s TFTP server and passes

to it a required minimal set of parameters - the

most important one is the URL of the Fore-

man server. Operating system boots and con-

tacts Foreman via HTTPS and requests a pro-

visioning script that is rendered from a tem-

plate. The provisioning script is usually re-

sponsible for the OS installation, OS config-

uration and the installation of configuration

tools (e.g. Puppet or Chef). The configura-

tion tools then take over and perform post-

installation tasks. The installed host reports

success back to Foreman by triggering a spe-

cial URL causing Foreman to consider this

host ”built” and deactivate it’s boot via DHCP.

The result of a Puppet (or Chef) run is sub-

mitted to Foreman separately as a ”report”.

Foreman provides web-based access to the re-

port, indicating success or failure with an icon

in the hosts screen. Access to submitted Pup-

pet facts is provided, too. It is possible to trig-

ger a Puppet run on a host via the web inter-

face (using mcollective).

1.4 Extendability
The Foreman software is customizable and

extensible by various plugins. A very useful

plugin is the ”Foreman Hooks” plugin, which

enables extension of various events (e.g. host

creation, deletion or update) by custom tasks.

There are many other plugins available for

download that extend Foreman’s UI or add

other features. It is possible to write individ-

ual plugins using the plugin API.

Recently introduced subproject Foreman

Chef Handler[3] improves Foreman support

for the Chef configuration tool by providing

integration with Foreman’s facts and reports

features. Combined with Foreman Hooks it

is possible to integrate the Chef configuration

management tool with Foreman.

1.5 Development and Community

The project development is located on

github[5]. As Foreman is a Red Hat com-

munity project, most of Foreman developers

are Red Had employees. As Foreman is go-

ing to be one of the key components of the

new Red Hat Satellite 6 product, most of the

development is focused on RHEL-related is-

sues. Nevertheless Foreman provides basic

support for other operating systems.

Bug reports and feature request can be

submitted on the project’s Redmine issue

tracker[4]. Pull requests submitted on the

project github page[5] should reference these

issues.

There is ongoing work on providing better

FreeBSD support with key contributions from

Nils Domrose1 and the author of this article2.

Their recent changes have been reviewed and

accepted by the project.

2 Deploying FreeBSD
Since version 1.4 Foreman is able to deploy

FreeBSD systems. The current requirement is

a bootable image (e.g. mfsBSD) loaded by the

Syslinux’s memdisk feature. This memdisk

image needs to be configured to download

1Nils Domrose’s Github page: https://github.com/endyman
2Martin Matuška’s Github page: https://github.com/mmatuska

117

and process the provisioning script provided

by Foreman during the startup phase. The

name of the image must be: FreeBSD-[arch]-
[release]-mfs.img and it must be located in

the boot/ subdirectory of the TFTP root (pro-

vided by a Smart Proxy). The provisioning

script is downloaded from the default URL3

and may be e.g. a pc-sysinstall configuration

file or a simple shell script - this depends on

the image. The task of this rendered script

is to install FreeBSD (with or without Pup-

pet/Chef) on the underlying physical or vir-

tual system. Puppet/Chef in intended to post-

configure the installed system.

2.1 mfsBSD Image

mfsBSD[8] is a toolset to create small-sized

but full-featured mfsroot based distributions

of FreeBSD that store all files in memory

(MFS) and load from hard drive, usb storage

device, optical media or network.

A customized mfsBSD memdisk image

can be built for this purpose. The only not

yet resolved drawback is the requirement of

hardcoding of the Foreman URL to the mfs-

BSD image. In future Foreman releases this

issue may be resolved e.g. via custom DHCP

options.

The image can be created e.g from a

FreeBSD 10 ISO image by following the stan-

dard procedures from documentation files and

the mfsBSD Homepage[7]. The only dif-

ference is the requirement to add a custom

startup script (e.g. /etc/rc.local) to the image.

This script downloads and processes further

provisioning data from Foreman.

3 Conclusion

Foreman is a relatively new tool trying to es-

tablish a market share in the field of open

source system deployment and configuration

management. It is still under intense devel-

opment and its main focus lies on integration

with RHEL Linux. Nevertheless one of Fore-

man’s goals is to be an universal tool and non-

Linux OS support contributions are welcome.

Starting with Foreman 1.4 it is possible to

deploy FreeBSD systems using mfsBSD with

some limitations4. This article author’s fu-

ture goal is to add Foreman and Smart Proxy

server installation to the FreeBSD ports tree.

References
[1] Fog. The Ruby cloud services library

homepage. http://fog.io.

[2] Foreman Project. Foreman 1.4 Man-

ual. http://theforeman.org/
manuals/1.4/index.html.

[3] Foreman Project. Foreman

Chef Handler. https://
github.com/theforeman/
chef-handler-foreman.

[4] Foreman Project. Foreman Issue Tracker.

http://projects.theforeman.
org/projects/foreman/issues.

[5] Foreman Project. Foreman Project

Github Page. https://github.
com/theforeman.

[6] Foreman Project. Foreman

Project Homepage. http:
//www.theforeman.org.

[7] M. Matuška. mfsBSD Homepage.

http://mfsbsd.vx.sk.

[8] M. Matuška. mfsBSD - The Swiss Army

Knife for FreeBSD system administra-

tors. BSD Magazine, 4(8):16–20, August

2011.

3default Foreman provisioning URL: "http://foreman/unattended/provision"
4missing ability to pass parameters on boot (e.g. Foreman provisioning URL)

118

Implementation and Modification for CPE Routers:

Filter Rule Optimization, IPsec Interface and Ethernet Switch

Masanobu SAITOH(msaitoh@netbsd.org)∗ Hiroki SUENAGA(hsuenaga@iij.ad.jp)†

March 2014

Abstract

Internet Initiative Japan Inc. (IIJ) has developed
its own Customer Premises Equipment (CPE), called
SEIL , for 15 years. The firmware of SEIL is based
on NetBSD and IIJ has modified NetBSD to optimize
for the use as a CPE.

A CPE is one of special use cases, so we don’t say
all of our modifications is worth to merge. Never-
theless, we think some of them are worth to merge
and there are some considerable ideas. We mainly
describes about three things: filter rule optimization,
IPsec interface and Ethernet switch.

1 Implementation and modifi-
cation for CPE

IIJ has modified the some parts of NetBSD to im-
prove performance and functionalities of our CPE.

Several years ago, IIJ implemented own IP filter
and NAT/NAPT functions named iipf and iipfnat.
NetBSD had an IP filter implementation ipf , how-
ever it didn’t satisfy our requirements. pf and npf
wasn’t born yet. iipf had implemented some ideas
to improve throughput. It has a hash-based flow-
caching layer. Even if cache-miss occurs, iipf keeps
reasonable throughput thanks to flow rules that are
stored in an optimized tree.

Our IPsec stack also has a caching layer on Secu-
rity Policy Database (SPD) and Security Association
Database (SAD). Because NetBSD’s PF KEY API

∗The NetBSD Foundation
†Internet Initiative Japan Inc.

uses list structures for SPD and SAD, throughput
will drop if there are a number of SP or SA. A CPE
is often used to create VPNs, so the number of SP
and SA can be very large. IPsec tunneling is also
important for VPN; many customers prefer Route-
based VPN to Policy-based VPN. (This topic will be
described in another article.)

For small office, Ethernet switch is required. Eth-
ernet switch chip is not expensive and it’s easy to
integrate into CPE. Integrating Ethernet switch into
CPE is better than nothing because both router func-
tion and Ethernet switch function can be managed
comprehensively.

2 Filter Rule Scan Optimiza-
tion

In this section, we describe the new optimization of
our packet filer.

2.1 Filter rule, state and result cache

On the implementations of general packet filter and
old filter implementation on SEIL, the processing
speed is proportional to the number of filter rules.
If the number of the rules is 100, in the worst case,
all 100 rules are checked.

To avoid this problem, the state mechanism is
used. When a packet was passed, the interface,
source/destination address, source/destination port
and so on were saved into an entry of a hash table.
And then, a hash value is calculated in each packet
and the value is looked up. If the entry was found,

119

Figure 1: Filter Result Cache

the packet is passed. This mechanism is good be-
cause it doesn’t scan rules if it is in a hash table. If a
lot of data is processed with the same state, the hit
ratio is very high. But, if a hash miss occurred a rule
scan is done. It’s heavy task.

In iipf, it caches a packet’s information(interface,
source, dest, protocol), the hash value and the re-
sult(block or pass) independently of the result. When
rule is scanned, at first, a packet’s hash value is cal-
culated from the address, protocol and port number,
and the value is used to check the result cache. If
it exists, the result(block or pass) is returned imme-
diately. If it doesn’t exist, rule scan is done, and
the packet information, hash value and the result are
saved into the result cache for the next check (Fig-
ure 1). The entries are managed by LRU algorithm.

2.2 Optimizing rule scan itself

An fundamental way to speedup filtering is to im-
prove the performance of rule scanning which is done
when a cache miss happened.

Figure 2 is an example of iipf’s filter rules. The
top entry of the rules is evaluated first and the bot-
tom entry is evaluated at last. The third column is
an identifier string name to specify each rule. With
the old implementation, the rule is evaluated like Fig-

ure 3. So, the more number of rules increased, the
longer the processing speed becomes. One of opti-
mization way is to change such evaluations like Fig-
ure 4. New implementation does such optimization
when rules are set.

2.3 Implementation

One of the way to implement optimization described
above is to use compiler technique. Rules are decom-
posed into small statements and then those state-
ments are optimized with composer technique. It’s
possible but the implementation is not easy.

Our solution is splitting filter rule lists using with
special condition statements to reduce the number of
rules that are scanned. The merit of this way is that
it’s unnecessary to change the evaluation of each filter
rule.

1. Make a list of conditions which are used for split-
ting rules into two groups. Interface, address,
protocol an port are used for the conditions.

2. Select one of conditions.

3. Split filer rules into two groups by checking
whether a rule matches or not. If a rule can’t
be identified whether it matches or not. The
rule is put into both groups.

4. For each group, goto step 2 and retry.

5. Stop when the number of rules was decreased a
specified limit.

Try this algorithm to Figure 2’s rules. Figure 5 is
the first try. pppoe0 is selected. An rule that the
interface “any” matches both pppoe0 and others, so
the rule is put into both groups. Figure 6 is the
second try. The next condition is “protocol number
is less than 17”. The rule of “protocol any” belongs
to both groups. Figure 7 is the third try. The next
condition is “protocol number is less than 6”. The
rule of “protocol any” belongs to both groups. The
result means that three rules are checked on the worst
case. The number was decreased from 6 to 3.

120

filter add LAN interface lan0 direction in/out action pass
filter add PING_PASS interface pppoe0 direction in protocol icmp icmp-type 8 action pass
filter add ICMP_BLOCK interface pppoe0 direction in protocol icmp action block
filter add DNS_PASS interface pppoe0 direction in/out protocol udp dstport 53 action pass
filter add TCP_PASS interface pppoe0 direction in/out protocol tcp action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

Figure 2: iipf’s filter rules example 1

/* LAN */
if (pkt.interface == "lan0")

return PASS;

/* PING_PASS */
if ((pkt.interface == "pppoe0") &&

(pkt.direction == in) &&
(pkt.protocol == icmp) &&
(pkt.icmp.type == 8))

return PASS;

/* ICMP_BLOCK */
if ((pkt.interface == "pppoe0") &&

(pkt.direction == in) &&
(pkt.protocol == icmp))

return BLOCK;

/* DNS_PASS */
if ((pkt.interface == "pppoe0") &&

(pkt.protocol == udp) &&
(pkt.udp.dstport == 53))

return PASS;

/* TCP_PASS */
if ((pkt.interface == "pppoe0") &&

(pkt.protocol == tcp) &&
return PASS;

/* BLOCK_RULE */
return BLOCK;

Figure 3: Normal processing exam-
ple of Figure 2 rules

if (pkt.interface == "pppoe0") {
if (pkt.direction == in) {

if (pkt.protocol == icmp) {
if (pkt.icmp.type == 8) {

return PASS;
} else {

return BLOCK;
}

} else if (pkt.protocol == udp) {
if (pkt.udp.dstport == 53) {

return PASS;
}

} else if (pkt.protocol == tcp) {
return PASS;

} else {
return BLOCK;

}
} else {

if (pkt.protocol == udp) {
if (pkt.udp.dstport == 53) {

return PASS;
}

} else if (pkt.protocol == tcp) {
return PASS;

} else {
return BLOCK;

}
}

} else {
if (pkt.interface == "lan0") {

return PASS;
}
return BLOCK;

}

Figure 4: Optimized processing ex-
ample of Figure 2 rules

121

COND_INTERFACE("pppoe0")
filter add PING_PASS interface pppoe0 direction in protocol icmp icmp-type 8 action pass
filter add ICMP_BLOCK interface pppoe0 direction in protocol icmp action block
filter add DNS_PASS interface pppoe0 direction in/out protocol udp dstport 53 action pass
filter add TCP_PASS interface pppoe0 direction in/out protocol tcp action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

!COND_INTERFACE("pppoe0")
filter add LAN interface lan0 direction in/out action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

Figure 5: Try 1. Split with pppoe0.

COND_INTERFACE("pppoe0")
COND_PROTOCOL(<17)

filter add PING_PASS interface pppoe0 direction in protocol icmp icmp-type 8 action pass
filter add ICMP_BLOCK interface pppoe0 direction in protocol icmp action block
filter add TCP_PASS interface pppoe0 direction in/out protocol tcp action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

!COND_PROTOCOL(<17)
filter add DNS_PASS interface pppoe0 direction in/out protocol udp dstport 53 action pass
filter add BLOCK interface any direction in/out protocol any action block

!COND_INTERFACE("pppoe0")
filter add LAN interface lan0 direction in/out action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

Figure 6: Try 2. Split with protocol number is less than 17.

COND_INTERFACE(‘‘pppoe0’’)
COND_PROTOCOL(<17)

COND_PROTOCOL(<6)
filter add PING_PASS interface pppoe0 direction in protocol icmp icmp-type 8 action pass
filter add ICMP_BLOCK interface pppoe0 direction in protocol icmp action block
filter add BLOCK interface any direction in/out protocol any action block

!COND_PROTOCOL(<6)
filter add TCP_PASS interface pppoe0 direction in/out protocol tcp action pass
filter add BLOCK interface any direction in/out protocol any action block

!COND_PROTOCOL(<17)
filter add DNS_PASS interface pppoe0 direction in/out protocol udp dstport 53 action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

!COND_INTERFACE(‘‘pppoe0’’)
filter add LAN interface lan0 direction in/out action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

Figure 7: Try 3. Split with protocol number is less than 6.

122

2.4 Selection of condition value

In above example, condition values were selected a
little intentionally. In real program, all values which
appeared in the rules are tried and the best balanced
condition is used.

Next filter rule example is Figure 8. At first step,
make a list of conditions which are used for splitting
rules into two groups. The list is as follows:

INTERFACE = "pppoe0"
SRC < 10.0.0.0
SRC < 11.0.0.0
SRC < 172.16.0.0
SRC < 172.32.0.0
SRC < 192.168.0.0
SRC < 192.169.0.0
PROTOCOL < TCP
DSTPORT < 22
DSTPORT < 24
DSTPORT < 80
DSTPORT < 443
DSTPORT < 512
DSTPORT < 514

And then, split rules using with the all conditions.
The result is Table 1. The best balanced condition is
COND DSTPORT(<24), so the condition is selected.
Then, apply the algorithm with top half of Figure 9.
The next candidates are:

INTERFACE = pppoe0
SRC < 10.0.0.0
SRC < 11.0.0.0
SRC < 172.16.0.0
SRC < 172.32.0.0
SRC < 192.168.0.0
SRC < 192.169.0.0
PROTOCOL < TCP
DSTPORT < 22
DSTPORT < 24

And, the next split candidates and the results
are in Figure 2 The best balanced condition is
COND SRC(<11.0.0.0), so the condition is selected.
By repeating this, the final result is in Figure 10.
This rules can’t be split anymore. The result means
that three rules are checked on the worst case. The
number was decreased from 7 to 2.

2.5 Performance result

The performance result is shown in Figure 11. Test
environment is:

• SEIL/B1 (Intel IXP432 400MHz, RAM 128MB)

Figure 11: Performance comparison of filter rule op-
timization

• Packet length 512bytes

• One direction.

• Incrementing source address in the range of
10.0.0.0/8.

The result showed that the new algorithm works fine
and the effect of the number of filter rule is very small.

3 Route packets to IPsec tun-
nel using routing table

IPsec based VPN is one of important functionalites
of IIJ’s CPE. Many corporations use IPsec VPN for
internal communications. Some corporations have a
large number of satellite offices, and redundant data
center networks. Each of satellite office has redun-
dant VPN connections to each data center network.
So the CPE on a satellite network needs to select one
from the redundant connections somehow.

A typical IPsec implementation uses ’Security As-
sociation Database(SAD)’ to create VPN connec-
tions, and uses ’Security Policy Database(SPD)’ to
select one from the VPN connections. On NetBSD,
the SPD is implemented as strictly ordered lists like

123

filter add RULE1 interface pppoe0 src 10.0.0.0/24 protocol any action pass
filter add RULE2 interface pppoe0 src 172.16.0.0/12 protocol any action pass
filter add RULE3 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 22-23 action pass
filter add RULE4 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 80 action pass
filter add RULE5 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 443 action pass
filter add RULE6 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 512-513 action pass
filter add RULEB interface any protocol any action block

Figure 8: iipf’s filter rules example 2

condition hogehoge rules
COND INTERFACE(”pppoe0”) RULE1,RULE2,RULE3,RULE4,RULE5,RULE6,RULEB
!COND INTERFACE(”pppoe0”) RULEB

COND SRC(<10.0.0.0) RULEB
!COND SRC(<10.0.0.0) RULE1,RULE2,RULE3,RULE4,RULE5,RULE6,RULEB
COND SRC(<11.0.0.0) RULE1,RULEB
!COND SRC(<11.0.0.0) RULE2,RULE3,RULE4,RULE5,RULE6,RULEB

COND SRC(<172.16.0.0) RULE1,RULEB
!COND SRC(<172.16.0.0) RULE2,RULE3,RULE4,RULE5,RULE6,RULEB
COND SRC(<172.32.0.0) RULE1,RULE2,RULEB
!COND SRC(<172.32.0.0) RULE3,RULE4,RULE5,RULE6,RULEB
COND SRC(<192.168.0.0) RULE1,RULE2,RULEB
!COND SRC(<192.168.0.0) RULE3,RULE4,RULE5,RULE6,RULEB
COND SRC(<192.169.0.0) RULE1,RULE2,RULE3,RULE4,RULE5,RULE6,RULEB
!COND SRC(<192.169.0.0) RULEB
COND PROTOCOL(<tcp) RULE1,RULE2,RULEB
!COND PROTOCOL(<tcp) RULE3,RULE4,RULE5,RULE6,RULEB

COND DSTPORT(<22) RULE1,RULE2,RULEB
!COND DSTPORT(<22) RULE3,RULE4,RULE5,RULE6,RULEB
COND DSTPORT(<24) RULE1,RULE2,RULE3,RULEB
!COND DSTPORT(<24) RULE4,RULE5,RULE6,RULEB
COND DSTPORT(<80) RULE1,RULE2,RULE3,RULEB
!COND DSTPORT(<80) RULE4,RULE5,RULE6,RULEB
COND DSTPORT(<443) RULE1,RULE2,RULE3,RULE4,RULEB
!COND DSTPORT(<443) RULE5,RULE6,RULEB
COND DSTPORT(<512) RULE1,RULE2,RULE3,RULE4,RULE5,RULEB
!COND DSTPORT(<512) RULE6,RULEB
COND DSTPORT(<514) RULE1,RULE2,RULE3,RULE4,RULE5,RULE6,RULEB
!COND DSTPORT(<514) RULEB

Table 1: First Split candidates and the results

124

COND_PROTOCOL(<24)
filter add RULE1 interface pppoe0 src 10.0.0.0/24 protocol any action pass
filter add RULE2 interface pppoe0 src 172.16.0.0/12 protocol any action pass
filter add RULE3 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 22-23 action pass
filter add BLOCK interface any protocol any action block

!COND_PROTOCOL(<24)
filter add RULE4 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 80 action pass
filter add RULE5 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 443 action pass
filter add RULE6 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 512-513 action pass
filter add RULEB interface any protocol any action block

Figure 9: 1st split result

condition rules
COND INTERFACE(“pppoe0”) RULE1,RULE2,RULE3,RULEB
!COND INTERFACE(“pppoe0”) RULEB

COND SRC(<10.0.0.0) RULEB
!COND SRC(<10.0.0.0) RULE1,RULE2,RULE3,RULEB
COND SRC(<11.0.0.0) RULE1,RULEB
!COND SRC(<11.0.0.0) RULE2,RULE3,RULEB

COND SRC(<172.16.0.0) RULE1,RULEB
!COND SRC(<172.16.0.0) RULE2,RULE3,RULEB
COND SRC(<172.32.0.0) RULE1,RULE2,RULEB
!COND SRC(<172.32.0.0) RULE3,RULEB
COND SRC(<192.168.0.0) RULE1,RULE2,RULEB
!COND SRC(<192.168.0.0) RULE3,RULEB
COND SRC(<192.169.0.0) RULE1,RULE2,RULE3,RULEB
!COND SRC(<192.169.0.0) RULEB
COND PROTOCOL(<tcp) RULE1,RULE2,RULEB
!COND PROTOCOL(<tcp) RULE3,RULEB

COND DSTPORT(<22) RULE1,RULE2,RULEB
!COND DSTPORT(<22) RULE3,RULEB
COND DSTPORT(<24) RULE1,RULE2,RULE3,RULEB
!COND DSTPORT(<24) RULEB

Table 2: Second Split candidates and the results

125

COND_PROTOCOL(<24)
COND_SRC(<11.0.0.0)

filter add RULE1 interface pppoe0 src 10.0.0.0/24 protocol any action pass
filter add BLOCK interface any protocol any action block

!COND_SRC(<11.0.0.0)
COND_SRC(<172.32.0.0)

filter add RULE2 interface pppoe0 src 172.16.0.0/12 protocol any action pass
filter add BLOCK interface any protocol any action block

!COND_SRC(<172.32.0.0)
filter add RULE3 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 22-23 action pass
filter add BLOCK interface any protocol any action block

!COND_PROTOCOL(<24)
COND_DSTPORT(<512)

COND_DSTPORT(<443)
filter add RULE4 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 80 action pass
filter add BLOCK interface any protocol any action block

!COND_DSTPORT(<443)
filter add RULE5 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 443 action pass
filter add BLOCK interface any protocol any action block

!COND_ DSTPORT(<512)
filter add RULE6 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 512-513 action pass
filter add BLOCK interface any protocol any action block

Figure 10: final split

filter rules. Each entry of SPD describes a packet to
be secured.

IIJ added some modifications to the NetBSD’s im-
plementation. We discuss about the modifications in
this section. Figure 12 shows the outline of IIJ’s mod-
ifications. Gray colored components in the figure are
extended by IIJ.

3.1 Problem of typical IPsec imple-
mentation

We have 2 problem to use NetBSD as a CPE.
One problem is performance. The implementa-

tion of SPD is simple and secure, but we must exe-
cute LISTFOREACH() to each packet. Encryption
throughput of our CPE is about 100 - 200 Mbps. If
average packet length is 1000 bytes, the packet ar-
riving rate is about 12 kpps to 25 kpps. This means
LIST FOREACH() will be executed 25,000 times a
seconds. And if the SPD has 100 entries, memcmp()
will be executed 2,500,000 times a seconds(2.5 MHz!).
Of course, the SPD is much smaller on many work-
stations, but the SPD of VPN devices often have hun-
dreds of entries. SPD grows lager due to number of
offices and data centers, and due to number of net-

NetBSD IPsec SAD/SPD lookup

IPsec SAD/SPD Caching Layer

SAD SPD
IPsec I/F
SPD

key_allocsp()
IPsec Interface

network pesudo device

ip_input()

key_allocsa()

Packet
Input

policy based processing routing based processing

add/del

setkey
command

ifconfig
command

tunnel
deletetunnel

add/del/read

read

Figure 12: IPsec modifications

126

work segments in each of networks. It is very easy to
grow the SPD.

The other problem is redundancy. SPD is a strictly
ordered list, and there is no same order(priority).
Each of entry just has a single actions, and there is no
way to select multiple connection. It is hard to have a
benefit of redundant connections. Some VPN devices
can use a routing table instead of SPD. Because there
are many existing redundant routing techniques, it
easy to have a benefit of the redundant VPN connec-
tions. IIJ’s CPE supports such routing based IPsec
VPN. Here is a example loop in netipsec/key.c.

647 struct secpolicy *
648 key_allocsp(const struct secpolicyindex *spidx,

u_int dir, const char* where, int tag)
649 {
650 struct secpolicy *sp;
651 int s;
...
672 LIST_FOREACH(sp, &sptree[dir], chain) {
...
677 if (sp->state == IPSEC_SPSTATE_DEAD)
678 continue;
679 if (key_cmpspidx_withmask(&sp->spidx,

spidx))
680 goto found;
681 }
...

3.2 Improve SAD/SPD lookup per-
formance

IIJ implements software based caching layer to SPD
and SAD. The caching code takes a packet header,
hash it, then lookup the cache table. The table has
a pointer to a SAD/SPD entry. If there is no entry
for the packet, scan the SAD/SPD and write it to
cache table. This strategy works fine for the CPE.
Because the number of node in the corporation’s net-
work is much smaller than the real Internet, the flow
table doesn’t become so large. Our implementation
uses 2048 entries for the cache table and it works
fine to connect to 100 - 200 satellite networks. Of
course, there are some exceptions. For example, ran-
dom traffics generated by malwares are pollutes the
cache table.

There are 13 API functions for SPD/SAD caching
layer management, 1 initialization, 4 lookups for each
of structure, and 8 invalidates.

void key_cache_init();

struct secpolicy *sp_cache_lookup();
struct secashead *sah_cache_lookup();
struct secasvar *sav_cache_lookup();
struct secacq *acq_cache_lookup();

void sp_cache_inval(void);
void sp_cache_inval1(struct secpolicy *);
void sah_cache_inval(void);
void sah_cache_inval1(struct secashead *)
void sav_cache_inval(void);
void sav_cache_inval1(struct secasvar *);
void acq_cache_inval(void);
void acq_cache_inval1(struct secacq *);

Cache lookup code is simply inserted before the
LIST FOREACH().

647 struct secpolicy *
648 key_allocsp(const struct secpolicyindex *spidx,

u_int dir, const char* where, int tag)
649 {
650 struct secpolicy *sp;
651 int s;
...
666 if (key_cache_enable > 0) {
667 /* IIJ Extension: lookup cache */
668 sp = sp_cache_lookup(spidx, dir);
669 goto skip;
670 }
671
672 LIST_FOREACH(sp, &sptree[dir], chain) {

The hashing algorithm is very important compo-
nent. The algorithm must be fast enough and must
have enough distribution. Unfortunately, there is no
specialist of mathematics in IIJ’s CPE team, the al-
gorithm should not be a best. Here is our hashing
code for your interest.

127

if (src->ss_family == AF_INET) {
u_int32_t *saddr, *daddr;
u_int32_t sport, dport;

saddr = (u_int32_t *)&satosin(src)->sin_addr;
daddr = (u_int32_t *)&satosin(dst)->sin_addr;
sport = (u_int32_t)satosin(src)->sin_port;
dport = (u_int32_t)satosin(dst)->sin_port;

hash = *saddr ^ bswap32(*daddr) ^
(sport << 16) ^ dport;

hash = (hash >> 16) ^ hash;
hash = (hash >> 4) ^ hash;

}
else if (src->ss_family == AF_INET6) {

struct in6_addr *saddr, *daddr;
u_int32_t sport, dport;
u_int32_t hash128[4];

saddr = &satosin6(src)->sin6_addr;
daddr = &satosin6(dst)->sin6_addr;
sport = (u_int32_t)satosin6(src)->sin6_port;
dport = (u_int32_t)satosin6(dst)->sin6_port;

/* stage 1 */
hash128[0] =

saddr->s6_addr32[0] ^ daddr->s6_addr32[3];
hash128[1] =

saddr->s6_addr32[1] ^ daddr->s6_addr32[2];
hash128[2] =

saddr->s6_addr32[2] ^ daddr->s6_addr32[1];
hash128[3] =

saddr->s6_addr32[3] ^ daddr->s6_addr32[0];

/* stage 2 */
hash128[0] = hash128[0] ^ hash128[3];
hash128[1] = hash128[1] ^ hash128[2];

/* stage 3 */
hash = hash128[0] ^ hash128[1] ^

(sport << 16) ^ dport;
}

3.3 VPN tunnel network device

IIJ implements a VPN tunnel network device named
IPsec Interface. The device has BSD name ipsec0,
ipsec1, ..., ipsecN . It is a kind of pseudo network
device like a IP-IP tunneling device like gif, gre. If a
packet is routed into the IPsec interface, the kernel
apply IPsec tunnel encryption. There is no need to
write a SPD.

The device is controlled by ifconfig command as
same as gif device. When tunnel address is config-
ured, the device create Security Policies automati-
cally. The Security Policies are registered to a SPD
other than NetBSD’s genuine SPD. i.e. IIJ’s kernel
has 2 separated SPDs. SP lookup code always looks
for genuine SPD 1st, then the IPsec Interface’s SPD
2nd. The generated entry is fully compatible with

Security Policies of transport mode IPsec to secure
tunnel end-point address. Thus, there is no modifica-
tion for crypto subsystem. And IPsec Interfaces can
share the NetBSD’s genuine SAD. The code snippet
is here. A LIST FOREACH is just added.

647 struct secpolicy *
648 key_allocsp(const struct secpolicyindex *spidx,

u_int dir, const char* where, int tag)
649 {
650 struct secpolicy *sp;
651 int s;
...
672 LIST_FOREACH(sp, &sptree[dir], chain) {
...
681 }
682 #if NIPSECIF > 0
683 LIST_FOREACH(sp, &ipsecif_sptree[dir], chain) {
...
692 }
693 #endif

setkey command can add or delete entries in gen-
uine SPD but it cannot add or delete entries in IPsec
Interface’s SPD. But the setkey command can read
the entries in IPsec Interface’s SPD. An IKE server
can also read the entries in IPsec Interface’s SPD,
and create a SA for a entry in IPsec Interface’s SPD.
We don’t need to modify IKE server and most of
management services. In kernel IPsec stack also read
a entry in IPsec Interface’s SPD via APIs in key.c,
so we don’t need to modify existing IPsec stack. We
just modified DB lookup code in key.c. Here is simple
example of SPD behavior.

Example 1, configure the interface. IPv6 traffic is
dropped by default. Lack of awareness of IPv6 is
security risk.

128

setkey -DP
No SPD entries.
ifconfig ipsec0
ipsec0: flags=8010<POINTOPOINT,MULTICAST>

inet6 fe80::2e0:4dff:fe30:28%ipsec0
-> prefixlen 64 scopeid 0xf

ifconfig ipsec0 tunnel 203.0.113.1 203.0.113.2
ifconfig ipsec0 inet 192.0.2.1
ifconfig ipsec0
ipsec0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST>

tunnel inet 203.0.113.1 --> 203.0.113.2
inet 192.0.2.1 -> netmask 0xffffff00
inet6 fe80::2e0:4dff:fe30:28%ipsec0

-> prefixlen 64 scopeid 0xf
setkey -DP
203.0.113.2[any] 203.0.113.1[any] 41(ipv6)

in discard
spid=36 seq=3 pid=1807
refcnt=1

203.0.113.2[any] 203.0.113.1[any] 4(ipv4)
in ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16402
spid=34 seq=2 pid=1807
refcnt=1

203.0.113.2[any] 203.0.113.1[any] 41(ipv6)
out discard
spid=35 seq=1 pid=1807
refcnt=1

203.0.113.1[any] 203.0.113.2[any] 4(ipv4)
out ipsec
esp/transport/203.0.113.1-203.0.113.2/unique#16401
spid=33 seq=0 pid=1807
refcnt=1

#

Example 2, setkey cannot delete SP entries for
IPsec Interfaces.

setkey -FP
setkey -DP
203.0.113.2[any] 203.0.113.1[any] 41(ipv6)

in ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16410
spid=44 seq=3 pid=2229
refcnt=1

203.0.113.2[any] 203.0.113.1[any] 4(ipv4)
in ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16408
spid=42 seq=2 pid=2229
refcnt=1

203.0.113.2[any] 203.0.113.1[any] 41(ipv6)
out ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16409
spid=43 seq=1 pid=2229
refcnt=1

203.0.113.1[any] 203.0.113.2[any] 4(ipv4)
out ipsec
esp/transport/203.0.113.1-203.0.113.2/unique#16407
spid=41 seq=0 pid=2229
refcnt=1

Example 3, accept IPv6 traffic. It is controlled by
link2 option.

ifconfig ipsec0 link2
setkey -DP
203.0.113.2[any] 203.0.113.1[any] 41(ipv6)

in ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16406
spid=40 seq=3 pid=13654
refcnt=1

203.0.113.2[any] 203.0.113.1[any] 4(ipv4)
in ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16404
spid=38 seq=2 pid=13654
refcnt=1

203.0.113.2[any] 203.0.113.1[any] 41(ipv6)
out ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16405
spid=39 seq=1 pid=13654
refcnt=1

203.0.113.1[any] 203.0.113.2[any] 4(ipv4)
out ipsec
esp/transport/203.0.113.1-203.0.113.2/unique#16403
spid=37 seq=0 pid=13654
refcnt=1

#

Example 4, unconfigure tunnel.

ifconfig ipsec0 deletetunnel
setkey -DP
No SPD entries.
#

Once IPsec Interface is configured, and IKE server
creates SAs for it, we can use the interface as common
P2P network interface like gif, ppp, pppoe, and so on.
We can manage VPN traffic by RIP, OSPF, float-
ing stack routes, other common routing techniques.
We can also use IP Filter on the IPsec Interface. It
very easy to have a benefit of redundant VPN con-
nections.

4 Ethernet Switch Framework

One of previous product named SEIL/X2 has an Eth-
ernet switch. The function is almost the same as SA-
W1’s Ethernet switch chip, but the old code had not
enough functions and it’s difficult to reuse. At that
time, FreeBSD has Ethernet switch function but it’s
little hardware dependent, so we designed new Eth-
ernet switch framework from scratch.

4.1 Design

The main concept on design is separating code into
Ethernet switch common function part and hardware

129

Figure 13: block diagram of SA-W1

specific part. For example, Ethernet function is sep-
arated into if ethersubr.c and if xxx.c (e.g. if bge.c).
Like that, Ethernet Switch framework is separated
into Ethernet switch common part and hardware spe-
cific part. Former is if etherswsubr.c and latter is
mvls.c for SA-W1.

To control Ethernet switch function, we made new
command swconfig(8). The main purpose of this
command was to hide hardware dependent part. The
current function of swconfig is similar to brconfig(4).
We think swconfig(8) and brconfig(8) can be inte-
grated into one command.

The driver is separated into two parts. One is
driver for controlling switch function(mvls(4)) and
another is driver for each port (mvlsp(4)). The ifnet
structure is used for those drivers. To control each
PHY with mii(4) layer, mvlsply(4) was made and is
attached from mvlsp(4) via mii attach(). Figure 13 is
the block diagram of SA-W1’s Ethernet switch part.

With this design, ifconfig, netstat, snmp can be
used without any modification. the media status and
each port’s counter can be checked with those pro-
grams.

See Figure 14 for the detail of the function of
swconfig(4). swconfig(4) calls MI ioctls to control
switch functions.

Figure 14: swconfig(4)

4.2 Current problem

Currently we have some problem. First, though this
is not specific to Ethernet switch, there is no best way
to know what mechanism is used between Ethernet
MAC and switch (or MII PHY), e.g. GMII, RGMII,
I2C or something else. So we sometimes have to write
it by hard-coding.

Another problem is the relation between the frame-
work and vlan(4). It’s little difficult to cooperate
with each other.

4.3 Future work

We implemented this framework only for Marvell
88E6171R. We are planning to port this framework
to other chips to check whether our design is appro-
priate or not.

5 Conclusion

Some of implementation can be merged to NetBSD
and other *BSD’s. For filter rule optimization, the
idea can be useful for some other filter implementa-
tions.

130

An Overview of Security
in the FreeBSD Kernel

Brought to you by

Dr. Marshall Kirk McKusick

AsiaBSD Conference
15th−16th March 2014

Tokyo University of Science
Tokyo, Japan

Copyright 2014 Marshall Kirk McKusick.
All Rights Reserved.

131

Security Mindset

Security is part of the design, not added later

From its beginning UNIX identified users and
used those identities for:

• access control to files

• manipulation control of processes

• access control to devices

• limited privilege expansion using setuid ()
and setgid ()

Over time these basic controls have been
refined though still remain intact more than
40 years later

132

Trusted Computing Base

Set of things that have to be secure for system
to be secure

• Kernel

• Boot scripts

• Core utilities (shell, login, ifconfig, etc)

• Libraries used by core utilities

Solid crypto support

• OpenSSH

• OpenSSL

• IPSEC

• GBDE

• GELI

• Hardware crypto

• /dev/random

133

Overview

Immutable and Append-only Flags

• Tamperproof critical files and logs

Jails

• Lightweight FreeBSD virtual machine

Random numbers (/dev/random)

• Needed for strong crypto

Access control lists (ACL)

• Discretionary access control to files and
directories

Mandatory access control (MAC)

• Systemwide controlled information flow
between files and programs

Privilege

• Subdivision of root privileges

Auditing

• Accountability and intrusion detection

Capsicum

• Sandboxing of process rights

134

Immutable and Append-only Flags

• Immutable file may not be changed,
moved, or deleted

• Append-only file is immutable except that
it may be appended

• User append-only and immutable flags
may be toggled by owner or root

• Root append-only and immutable flags
may not be cleared when system is secure

• System secure levels:

-1 always insecure (must be compiled
into kernel)

0 insecure mode (normally single user)

1 secure mode (normally multiuser)

2 very secure mode (at system admin
discretion)

• Secure mode prevents writing /dev/kmem,
/dev/mem, and mounted disks

• Very secure mode additionally prevents
writing any disk or rebooting

135

Immutable Limitations

• Immutable files can only be updated when
system is single-user

• Append-only files can only be rotated when
system is single-user

• Direct hardware access is restricted

• All startup activities must be protected

• Startup scripts and their containing
directories

• All binaries executed during startup

• All libraries used during startup

• Configuration files used during startup

136

Jails

Create a group of processes with their own
root-administered environment

bin lib sbin

vnet1
vem0b

mail

bin jails lib sbin

web

bin dev etc usr sbin var
host root

vem1aem0vem0a
vnet0

vnet2
vem1b

var etc sbin
dev usr bin

bin lib sbin

var etc sbin
dev usr bin

137

Jail Rules

Permitted

• running or signalling processes within jail

• changes to files within jail

• binding ports to jail’s IP addresses

• accessing raw, div ert, or routing sockets on
jail’s virtual network interfaces

Not permitted

• getting information on processes outside
of the jail

• changing kernel variables

• mounting or unmounting filesystems

• modifying physical network interfaces or
configurations

• rebooting

138

Random Number Generation

Application access to random number using
/dev/random
• introduced in FreeBSD 5.3 in 2004 by

Mark Murray

• uses Yarrow, a cryptographic pseudo-
random number generator (PRNG)

• Yarrow reuses existing cryptographic
primitives such as cryptographic hashes
and counter-mode block encryption

Yarrow operational parts

• a flexible framework for entropy
acquisition from various types of sources
(e.g., interrupt timing, hardware RNG)

• an entropy accumulator based on a
cryptographic hash

• a reseed mechanism by which entropy is
converted into keying material,

• a generation mechanism using a counter-
mode encryption function (SHA256 and
AES) to generate a pseudo-random
sequence

139

Random Numbers in FreeBSD

Many CPUs implement built-in hardware
random number generators using oscillator
loops to generate difficult-to-predict output

• FreeBSD 5.3+ use the VIA generator
directly

• FreeBSD 9.2+ use Intel’s rdrand directly

• FreeBSD 10.0+ incorporate Intel’s rdrand
through Yarrow since hard to tell if rdrand
is working correctly or has been trojaned
by NSA, GCHQ, or anyone else.

For FreeBSD 11, Yarrow will be replaced by
Fortuna which automates the estimation of
how/when to use alternate entropy sources

Ongoing work for /dev/random
• boot-time integration

• good sources of entropy

• adaptations to Fortuna to improve
performance

• meeting application needs

140

Access Control Lists

File permission bits

• file permission bits are three entries in the
ACL itself

• permits full backward compatibility with
historical implementations

ACL capabilities:

• read, write, execute, lookup, and admin
permissions

• list of users each with own permissions

• list of groups each with own permissions

• permissions for all others

Default/inheritable ACL’s that propagate
down the file hierarchy

Tw o user-level commands:

• getfacl - get file ACL permissions

• setfacl - set file ACL permissions

141

Access Control List Semantics

Support for POSIX.1e and NFSv4 semantics

• By design, NFSv4 semantics are very
similar to Windows filesystem ACL
semantics

• UFS implements both POSIX.1e and
NFSv4 semantics (specified at boot time)

• ZFS implements only NFSv4 semantics

• NFSv4 uses inheritable ACLs rather than
the default ACL in POSIX.1e

• FreeBSD uses the same command-line
tools and APIs for both ACL types

142

Privilege

Each superuser privilege is identified and
treated separately

Nearly 200 defined in /sys/sys/priv.h, some
examples:

• PRIV_ACCT − Manage process
accounting.

• PRIV_MAXPROC − Exceed system
processes limit.

• PRIV_SETDUMPER − Configure dump
device.

• PRIV_REBOOT − Can reboot system.

• PRIV_SWAPON − Add swap space.

• PRIV_MSGBUF − Read kernel message
buffer.

• PRIV_KLD_LOAD − Load a kernel
module.

• PRIV_ADJTIME − Set time adjustment.

• PRIV_SETTIMEOFDAY − Can set time
of day.

• PRIV_VFS_WRITE − Override vnode
write permission.

143

Priviledge Applied

Privilege checks cover all areas of the system

• network configuration and filtering

• filesystem mounting, unmounting, and
exporting

• accessing or modifying kernel data and
modules

• many others

Each privilege has three properties applied to
a process or a file

• permitted: whether the process or file may
ev er hav e the privilege

• inheritable: whether the process or file
may grant the privilege

• effective: whether the process or file can
currently use the privilege

Access to privilege is done with MAC
modules via the priv_check () function.

144

Mandatory Access Control

Allows arbitrary security policies to be added
to the system using labels and an expansion
of traditional root access controls

Controls access/use of:

• files, pipes, and sockets

• kernel load-modules

• network interface configuration

• packet filtering

• process execution, visibility, signalling,
and tracing

• file mapping

• kernel data

• accounting information

• NFS exports

• swapping

145

Auditing

Accountability and intrusion detection

Based on Open Basic Security Module
(OpenBSM)

Generate records for kernel events involving

• access control

• authentication

• security management

• audit management

• user-level audit reports

Volume of audit trail is controllable

• audit preselection policy

• auditreduce to thin audit logs

User credentials can be augmented with an
audit identifier (AUID)

• Holds terminal and session to be added to
each audit record

• audit mask to subset global audit
preselection policy

146

Audit Handling

auditd daemon

• manages data collection

• content selection including selection of
records collected

• responds to events such as running low on
disk space

auditd daemon starts a kernel thread that
manages record distribution

• stored in local filesystem

• sent elsewhere for storage

• sent to intrusion detection daemon

Example audit record

147

Capsicum

Sandboxing of limited trust modules

• A small process with full privileges

• Untrusted libraries/modules run in
separate process with access limited to
minimal set of things that they need

Using Capsicum

• Process put into capability mode with
cap_enter ()

• Once in capability mode, cannot exit

• Can only work with its own file
descriptors

• No access to filesystem namespace (e.g.,
open () will fail but openat () will work if
given a descriptor open on a directory
from which to start.

148

Sample Capsicum Capabilities

A set of rights is delegated to each descriptor

Sixty defined in /sys/sys/capability.h, some
examples:

• CAP_READ − Read or receive

• CAP_WRITE − Write or send

• CAP_SEEK − Modify file descriptor
offset

• CAP_FCHFLAGS − Set file flags

• CAP_FCHDIR − Set working directory

• CAP_FCHMOD − Change file mode

• CAP_FCHOWN − Change file owner

• CAP_LOOKUP − Use as starting
directory for at operations

• CAP_POLL_EVENT − Test for events
using select, poll, kqueue

• CAP_POST_EVENT − Post an event to
kqueue

• CAP_ACCEPT − Accept sockets

• CAP_LISTEN − Set up a listen socket

149

Questions

Marshall Kirk McKusick

<mckusick@mckusick.com>

http://www.mckusick.com

http://www.freebsd.org

http://www.freebsdfoundation.org

150

Transparent Superpages for FreeBSD on ARM

Zbigniew Bodek
Semihalf, The FreeBSD Project

zbb@{semihalf.com, freebsd.org}

Abstract

This paper covers recent work on pro-
viding transparent superpages support for the
FreeBSD operating system on ARM. The con-
cept of superpages mechanism is a virtual mem-
ory optimization, which allows for efficient use
of the TLB translations, effectively reducing
overhead related to the memory management.
This technique can significantly increase sys-
tem’s performance at the interface between
CPU and main memory, thus affecting its over-
all efficiency.
The primary goal of this work is to elaborate
on how the superpages functionality has been
implemented on the FreeBSD/arm and what
are the results of its application. The pa-
per presents real-life measurements and bench-
marks performed on a modern, multiprocessor
ARM platform. Actual performance achieve-
ments and areas of application are shown. Fi-
nally, the article summarizes the possibilities of
future work and further improvements.

1 Introduction

ARM technology becomes more and more
prevailing, not only in the mobile and embed-
ded space. Contemporary ARM architecture
(ARMv7 and the upcoming ARMv8) is already
on a par with the traditional PC industry stan-
dards in terms of advanced CPU features like:

• MMU (with TLB)

• Multi-level Cache

• Multi-core

• Hardware coherency

Performance and scalability of the ARM-
based machine is largely dependent of these
functionalities. Majority of the modern ARM
chips is capable of running complex software
and handle multiple demanding tasks simulta-
neously. In fact, general purpose operating sys-
tems have become the default choice for these
devices.
The operating system (kernel) is an essential
component of many modern computer systems.
The main goal of the kernel operations is to pro-
vide runtime environment for user applications
and manage available hardware resources in an
efficient and reasonable way. Memory handling
is one of the top priority kernel services. Grow-
ing requirements of the contemporary applica-
tions result in a significant memory pressure
and increasing access overhead. Performance
impact related to the memory management is
likely to be at the level of 30% up to 60% [1].
This can be a serious issue, especially for the
system that operates under heavy load.

Today’s ARM hardware is designed to im-
prove handling of contemporary memory man-
agement challenges. The key to FreeBSD suc-
cess on this architecture is a combination of so-
phisticated techniques that will allow to take
full advantage of the hardware capabilities and
hence, provide better performance in many ap-
plications. One of such techniques is transpar-
ent superpages mechanism.
Superpages mechanism is a virtual memory sys-
tem feature, whose aim is to reduce memory
access overhead by making a better use of the
CPU’s Memory Management Unit hardware
capabilities. In particular, this mechanism pro-
vides runtime enlargement of the TLB (transla-
tion cache) coverage and results in less overhead

151

related to memory accesses. This technique had
already been applied on i386 and amd64 archi-
tectures and brought excellent results.

FreeBSD incorporates verified and ma-
ture, high-level methods to handle super-
pages. Work presented in this paper introduces
machine-dependent portion of the superpages
support for ARMv6 and ARMv7 on the men-
tioned OS.

To summarize, in this paper the following
contributions have been made:

• Problem analysis and explanation

• Introduction to possible problem solutions

• Implementation of the presented solution

• Validation (benchmarks and measure-
ments)

• Code upstream to the mainline FreeBSD
10.0-CURRENT

The project was sponsored by Semi-
half and The FreeBSD Foundation. The
code is publicly available beginning with
FreeBSD 10.0.

2 Problem Analysis

In a typical computer system, memory is
divided into few, general levels:

• CPU cache

• DRAM (main memory)

• Non-volatile backing storage (Hard Drive,
SSD, Flash memory)

Each level in the hierarchy has significantly
greater capacity and lower cost per storage unit
but also longer access time. This kind of design
provides best compromise between speed, price
and capabilities of the contemporary electron-
ics. However, the same architecture poses a

number of challenges for the memory manage-
ment system.

User applications stored in the external,
non-volatile memory need to be copied to the
main memory so that CPU can access them.
The operating system is expected to handle all
physical memory allocations, segments transi-
tions between DRAM and external storage as
well as protection of the memory chunks be-
longing to the concurrently running jobs. Vir-
tual memory system carries these tasks with-
out any user intervention. The concept allows
to implement various, favorable memory man-
agement techniques such as on-demand paging,
copy-on-write, shared memory and other.

2.1 Virtual Memory

Processor core uses so called Virtual Ad-
dress (VA) to refer to the particular memory
location. Therefore, the set of addresses that
are ’visible’ to the CPU is often called a Vir-
tual Address Space. On the other hand there
is a real or Physical Address Space (PA) which
can incorporate all system bus agents such as
DRAM, SoC registers, I/O.

Virtual memory introduces additional
layer of translation between those spaces, ef-
fectively separating them and providing artifi-
cial private work environment for each applica-
tion. This mechanism, however, requires some
portion of hardware support to operate. Most
application processors incorporate special hard-
ware entity for managing address translations
called Memory Management Unit (MMU). Ad-
dress translation is performed with the page
granulation. Page defines VA−→PA transla-
tion for a subset of addresses within that page.
Hence, for each resident page in the VA space
exists exactly one frame in the physical mem-
ory. For the CPU access to the virtual address
to succeed MMU has to provide the valid trans-
lation to the corresponding physical frame. The
translations are stored in the main memory in
the form of virtually indexed arrays, so called
Translation Tables or Page Tables.

152

To speed up the translation procedure
Memory Management Unit maintains a table
of recently used translations called Transla-
tion Lookaside Buffer (TLB).

2.1.1 TLB Translations

Access to the pages that still have their
translations cached in the TLB is performed
immediately and implies minimal overhead re-
lated to the access completion itself. Other sce-
narios result in a necessity to search for a proper
translation in the Translation Tables (presented
in the Figure 1) or, in case of failure, handling
the time consuming exception. TLB is there-
fore in the critical path of every memory access
and for that reason it is desired to be as fast
as possible. In practice, TLBs are fully asso-
ciative arrays of size limited to several dozens
of entries. In addition, operating systems usu-
ally configure TLB entries to cover the smallest
available page size so that dense page granula-
tion, thus low memory fragmentation could be
maintained. Mentioned factors form the con-
cept of TLB coverage, which can be described
as the amount of memory that can be accessed
directly, without TLB miss. Another substan-
tial TLB behavior can be observed during fre-
quent, numerous accesses to different pages in
the memory (such situation can occur when a
large set of data is being computed). Because
a lot of pages is being touched in the process,
free TLB entries become occupied fast. In or-
der to make room for subsequent translations
some entries need to be evicted. TLB evictions
are made according to the eviction algorithm
which is implementation defined. However, re-
gardless of the eviction algorithm, significant
paging traffic can cause recently used transla-
tions to be evicted even though they will need
to be restored in a moment. This phenomenon
is called TLB trashing. It is associated directly
with the TLB coverage factor and can seriously
impact system’s performance.

2.1.2 Constraints and opportunities

It is estimated that performance degra-
dation caused by the TLB misses is at 30-60%.

Figure 1: Memory access with TLB miss.

That is at least 20%, up to 50% more than in
1980’s and 1990’s [1]. TLB miss reduction is
therefore expected to improve memory band-
width and hence overall system performance,
especially for resource-hungry processes. Re-
ducing the number of TLB misses is equivalent
to TLB coverage enhancement. Obvious solu-
tions to achieve that would be to:

◦ Enlarge the TLB itself.
However, bigger translation cache means more
logic, higher complexity and greater energy
consumption that still may result in a little im-
provement. To sustain satisfying TLB charac-
teristics with the currently available technolo-
gies, translation buffers can usually hold tens
up to few hundreds of entries.

◦ Increase the base page size.
Majority of the microprocessor architectures
support more than one page size. This gives
the opportunity to cover larger memory areas
consuming only a single entry in the TLB. How-
ever, this solution has a major drawback in the
form of increased fragmentation and hence, in-
efficient memory utilization. The application
may need to access very limited amount of
memory but placed in a few, distinct locations.
If the small pages were used as a base allocation

153

unit, less memory is reserved and more physical
frames are available for other agents. On the
other hand using superpages as a main alloca-
tion unit results in a rapid exhaustion of avail-
able memory for new allocations. In addition,
single page descriptor contains only one set of
access permissions and page attributes includ-
ing dirty and referenced bits. For that reason,
the whole dirty superpages needs to be written
back to the external storage on page-out since
there is no way to determine which fraction of
the superpage has been actually written. This
may cause serious disk traffic that can surpass
the benefit from reducing TLB misses.

◦ Allow user to choose the page size.
In that case, the user would have to be aware
of the memory layout and requirements of the
running applications. That approach could be
as much effective for some cases as it will be
ineffective for any other. In fact, this method
contradicts the idea of the virtual memory that
should be a fully transparent layer.

2.1.3 Universal Solution

Reduction of the TLB miss factor has
proven to be a complex task that requires sup-
port from both hardware and operating system
sides. OS software is expected to provide low-
latency methods for memory layout control, su-
perpage allocation policy, efficient paging and
more.

FreeBSD operating system offers the
generic and machine independent framework
for transparent superpages management. Su-
perpages mechanism is a well elaborated tech-
nology on FreeBSD, which allow for runtime
page size adjustment based on the actual needs
of the running processes. This feature is al-
ready being successfully utilized on i386 and
amd64 platforms. The observed memory per-
formance boost for those architectures is at
30%. These promising numbers encouraged
to apply superpages technique on another, re-
cently popular ARM architecture. Modern
ARM revisions (ARMv6, ARMv7 and upcom-
ing ARMv8) are capable of using various page
sizes allowing for superpages mechanism uti-
lization.

3 Principles of Operation

Virtual memory system consists of two
main components. The machine-independent
VM manages the abstract entities such as ad-
dress spaces, objects in the memory or software
representations of the physical frames. The
architecture-dependent pmap(9), on the other
hand, operates on the memory management
hardware, page tables and all low-level struc-
tures. Superpages framework affects both as-
pects of the virtual memory system. Therefore,
in order to illustrate the main principles of su-
perpages mechanism, relevant VM operations
are described. Then the specification of the
Virtual Memory System Architecture (VMSA)
introduced in ARMv6/v7-compliant processors
is provided along with the opportunities to take
advantage of the superpages technique on that
architectures.

3.1 Reservation-based Allocation

VM uses vm_page structure to represent
physical frame in the memory. In fact, the
physical space is managed on page-by-page ba-
sis through this structure [2]. In the con-
text of superpages, vm_page can be called the
base page since it usually represents the small-
est translation unit available (in most cases
4 KB page). Operating system needs to track
the state and attributes of all resident pages
in the memory. This knowledge is a neces-
sity for a pager program to maintain an effec-
tive page replacement policy and decide which
pages should be kept in the main memory and
which ought to be discarded or written back to
the external disk.

Files or any areas of anonymous memory
are represented by virtual objects. vm_object
stores the information about related vm_pages
that are currently resident in the main memory,
size of the area described by this object, pointer
to shadow objects that hold private copies of
modified pages and other information [3]. At
system boot time, kernel detects the number
of free pages in the memory and assigns them
vm_page structures (except for pages occupied

154

Figure 2: Basic overview of the reservation-
based allocation.

by the kernel itself). When the processes be-
gin to execute and touch memory areas they
generate page faults since no pages from the
free list have been filled with relevant contents
and assigned to the corresponding object. This
mechanism is a part of the on-demand paging
and implies that only requested (and further
utilized) pages of any object are cached in the
main memory. Superpages technique relies on
this virtual memory feature and is in a way its
extension. When the reservation-based alloca-
tion is enabled (VM_NRESERVLEVEL set to non-
zero value) and the referenced object is of su-
perpage size or greater, VM will reserve a con-
tinuous physical area in memory for that ob-
ject. This is justified by the fact that super-
page mapping can translate a continuous range
of virtual addresses to the range of physical ad-
dresses within a single memory frame. Pages
within the created area are grouped in a pop-
ulation map. If the process that refers to the
object will keep touching subsequent pages in-
side the allocated area, the population map will
eventually get filled up. In that case, the re-
lated memory chunk will become a candidate
for promotion to a superpage. The mechanism
is briefly visualized in the Figure 2.

Not all reservations can be promoted even
though the underlying pages satisfy the conti-
nuity requirements. That is because the single
superpage translation has only one set of at-
tributes and access permissions for the entire
area covered by the mapping. Therefore, it is
obvious that all base pages within the popu-
lation map must be consistent in terms of all
settings and state for promotion to succeed. In
addition, superpages are preferred to be pro-
moted read-only unless all base pages have al-
ready been modified and are marked ’dirty’.
The intention is to avoid increased paging traf-
fic to the disk. Since there is only one modifica-
tion indicator for the whole superpage, there is
no way to determine which portion of the cor-
responding memory has been actually written.
Hence, the entire superpage area needs to be
written back to the external storage. Demotion
of the read-only superpage on write attempt is
proven to be a more effective solution [1]. Sum-
marizing, to allow for the superpage promotion,
the following requirements must be met:

• The area under the superpage has to be
continuous in both virtual and physical ad-
dress spaces

• All base mappings within the superpage
need to have identical attributes, state and
access permissions

Not all reservations can always be completed.
If the process is not using pages within the pop-
ulation map then the reservation is just hold-
ing free space for nothing. In that case VM
can evict the reserved area in favor of another
process. This proves that the superpages mech-
anism truly adapts to the current system needs
as only active pages participate in the page pro-
motion.

3.2 ARM VMSA

Virtual Memory System Architecture in-
troduced in ARMv7 is an extension of the
definition presented in ARMv6. Differences
between those revisions are not relevant to

155

this work since backward compatibility with
ARMv6 has to be preserved (ARMv6 and
ARMv7 share the the same pmap(9) module).

ARMv6/v7-compliant processors use Vir-
tual Addresses to describe a memory location
in their 32-bit Virtual Address Space. If the
CPU’s Memory Management Unit is disabled,
all Virtual Addresses refer directly to the cor-
responding locations in the Physical Address
Space. However, when MMU is enabled, CPU
needs additional information about which phys-
ical frame to access when some virtual address
is used. Both, logical and physical address
spaces are divided into chunks - pages and
frames respectively. Appropriate translations
are provided in form of memory resident Trans-
lation Tables. Single entry in the translation ta-
ble can hold either invalid data that will cause
Data/Prefetch abort on access, valid transla-
tion virtual−→physical or pointer to the next
level of translation. ARMv7 (without Large
Physical Address Extension) defines two-level
translation tables.

L1 table consists of 4096 word sized en-
tries each of which can:

• Cause an abort exception

• Translate a 1 MB page to 1 MB physical
frame (section mapping)

• Point to a second level translation table

In addition, a group of 16 L1 entries can trans-
late a 16 MB chunk of virtual space using just
one, supersection mapping.
L1 translation table occupies 16 KB of memory
and needs to be aligned to that boundary.

L2 translation table incorporates 256
word sized entries that can:

• Cause an abort exception

• Provide mapping for a 4 KB page (small
page)

Similarly to L1 entries, 16 L2 descriptors can be
used to translate 64 KB large page by a single
TLB entry. L2 translation table takes 1 KB of
memory and has to be stored with the same
alignment.

Recently used translations are cached in
the unified TLB. Most of the modern ARM
processors have additional, ’shadow’ TLBs for
instructions and data. These are designed to
speed-up the translation process even more and
are fully transparent to the programmer. Usu-
ally, TLBs in ARMv6/v7 CPUs can hold tens
of entries so the momentary TLB coverage is
rather small. An exceptional situation is when
pages bigger than 4 KB are used.

3.2.1 Translation Process

When a TLB miss occurs MMU is ex-
pected to find a mapping for the referenced
page. The process of fetching translations from
page tables to TLB is called a Translation Ta-
ble Walk (TTW) and on ARM it is performed
by hardware.

For a short page descriptor format (LPAE
disabled), translation table walk logic may need
to access both L1 and L2 tables to acquire
proper mapping. TTW starts with L1 page di-
rectory whose address in the memory is passed
to the MMU via Translation Table Base Reg-
ister (TTBR0/TTBR1). First, 12 most sig-
nificant bits of the virtual address (VA[31:20])
are used as an index to the L1 translation ta-
ble (page directory). If the L1 descriptor’s en-
coding does not indicate otherwise the section
(1 MB) or supersection (16 MB) mapping is in-
serted to the TLB and translation table walk
is over. However, if L1 entry points to the L2
table then 8 subsequent bits of the virtual ad-
dress (VA[19:12]) serve as an index to the desti-
nation L2 descriptor in that table. Finally the
information from L2 entry can be used to insert
small (4 KB) or large (64 KB) mapping to the
TLB. Of course, invalid L1 or L2 descriptor for-
mat results in data or prefetch abort depending
on the access type.

156

3.2.2 Page Table Entry

Both L1 and L2 page descriptors hold not
only physical address and size for the related
pages but also a set of encoded attributes that
can define access permissions, memory type,
cache mode and other. Page descriptor for-
mat is programmable to some extent, depend-
ing on enabled features and overall CPU/MMU
settings (access permissions model, type exten-
sion, etc.). In general, every aspect of any mem-
ory access is fully described by the page table
entry. This also indicates that any attempt to
reference a page in a different manner than al-
lowed will cause an exception.

4 Superpages Implementation for ARM

The paragraph elaborates on how the su-
perpages mechanism has been implemented and
operates on ARM. Main modifications to the
virtual memory system have been described
along with the explanation of the applied so-
lutions.

4.1 Superpage size selection

First step to support superpages on a new
architecture is to perform VM parameters tun-
ing. In particular, reservation-based allocation
needs to be enabled and configured according
to the chosen superpages sizes.

Machine independent layer re-
quires two parameters declared in
sys/arm/include/vmparam.h:

• VM_NRESERVLEVEL - specifies a number of
promotion levels enabled for the architec-
ture. Effectively this indicates how many
superpage sizes are used simultaneously.

• VM_LEVEL_{X}_ORDER - for each reserva-
tion level this parameter determines how
many base pages fully populate the related
reservation level.

At this stage a decision regarding supported
superpage sizes had to be made. 1 MB sec-
tion mapping has been chosen for a superpage
whereas 4 KB small mapping has remained a
base page. This approach has a twofold advan-
tage:

1. Shorter translation table walk when TLB
miss on the area covered by a section map-
ping.
In that scenario, TTW penalty will be lim-
ited to one memory access only (L1 table)
instead of two (L1 and L2 tables).

2. Better comparison with other architec-
tures.
i386 and amd64 can operate on just one
superpage size of 2/4 MB. Similar perfor-
mance impact was expected when using
complementary page sizes on ARM.

Summarizing, VM parameters have been
configured as follows:

VM_NRESERVLEVEL set to 1 - indicates one
reservation level and therefore one superpage
size in use.
VM_LEVEL_0_ORDER set to 8 - level 0 reservation
consists of 256 (1 « 8) base pages.

4.2 pmap(9) extensions

The core part of the machine dependent
portion of superpages support is focused on the
pmap module. From a high-level point of view,
VM ”informs” lower layer when the particular
reservation is fully populated. This event im-
plies a chance to promote a range of mappings
to a superpage but promotion itself still may
not succeed for various reasons. There are no
explicit directives from VM that would influ-
ence superpages management. pmap module is
therefore expected to handle:

• promotion of base pages to a superpage

• explicit superpage creation

• superpage demotion

• superpage removal

157

Figure 3: Page tables and kernel structures organization.

4.2.1 Basic Concepts

pmap(9) module is responsible for manag-
ing real mappings that are recognizable by the
MMU hardware. In addition it has to control
the state of all physical maps and pass rele-
vant bits to the VM. Main module file is lo-
cated at sys/arm/arm/pmap-v6.c and is sup-
plemented by the appropriate structure defi-
nitions from sys/arm/include/pmap.h. Core
structure representing physical map is struct
pmap.

During virtual memory system initializa-
tion pmap module allocates one L1 translation
table for each fifteen user processes out of max-
imum pool of maxproc. L1 entries sharing can
be achieved by marking all L1 descriptors with
the appropriate domain ID. Architecture de-
fines 16 domains of which 15 are used for user
processes and one is reserved for the kernel.
This design can reduce KVM occupancy as each
L1 table requires 16 KB of memory which is
never freed. Each pmap structure holds pm_l1
pointer to the corresponding L1 translation ta-
ble meta-data (l1_ttable) which provides ta-
ble’s physical address to move to the TTBR on
context switch as well as other information used
to allocate and free L1 table on process creation
and exit.

Figure 3 shows the page tables organiza-
tion and their relation with the corresponding
kernel structures. L1 page table entry points

to the L2 table which collects up to 256 L2
descriptors. Each L2 entry can map 4 KB of
memory. L2 table is allocated on demand and
can be freed when unused. This technique ef-
fectively saves 1 KB of KVA per each unused
L2 table.
pmap’s L2 management is performed via pm_l2
array of type struct l2_dtable. Each of
pm_l2 fields holds enough L2 descriptors to
cover 16 MB of data. Hence, for each
16 L1 table entries, exists one pm_l2 en-
try. l2_dtable structure incorporates 16 el-
ements of type struct l2_bucket each of
which describes single L2 table in memory. In
the current pmap-v6.c implementation, both
l2_dtable and L2 translation table are allo-
cated in runtime using UMA(9) zone allocator.
l2_occupancy and l2b_occupancy track the
number of allocated buckets and L2 descriptors
accordingly. l2_bucket can be deallocated if
none of 256 L2 entries within the L2 table is in
use. Similarly, l2_dtable can be freed as soon
as all 16 l2_buckets within the structure are
deallocated.

Additional challenge for the pmap module
is to track multiple mappings of the same phys-
ical page. Different mappings can have differ-
ent states even if they point to the same phys-
ical frame. When modifying physical layout
(page-out, etc.) it is necessary to take into ac-
count wired, dirty and other attributes of all
pages related to a particular physical frame.
The described functionality is provided by us-

158

ing pv_entry structures organized in chunks
and maintained for each pmap in the system.
When a new mapping is created for any pmap,
the corresponding pv_entry is allocated and
put into the PV list of the related vm_page.

Superpages support required to provide
extensions for the mentioned mechanisms and
techniques. Apart from implementing routines
for explicit superpage management the objec-
tive was to make the existing code superpages
aware.

4.2.2 Promotion to a Superpage

The decision whether to attempt promo-
tion is based on two main conditions:

• vm_reserv_level_iffullpop() - indi-
cates that physical reservation map is fully
populated

• l2b_occupancy - implies that (aligned)
virtual region of superpage size is fully
mapped using base pages

Both events will most likely occur during new
mapping insertion to the address space of the
process. Therefore the promotion attempt is
performed right after successful pmap_enter()
call.

The page promotion routine
(pmap_promote_section()) starts with
the preliminary classification of the page table
entries within the potential superpage. At
this point the decision had to be made which
pages to promote and which of them should be
excluded from the promotion. In the presented
implementation, promotion to a superpage is
discontinued for the following cases:

• VA belongs to a vectors page
Access to a page containing exception vec-
tors must never abort and should be ex-
cluded from any kind of manipulation for
safety reasons. Every abort in this case
would result in nested exception and fatal
system error.

• Page is not under PV management
With Type Extension (TEX) disabled,
page table entry has not enough room to
store all the necessary status bits. For that
reason pv_flags field from the pv_entry
structure holds the additional data includ-
ing bits relevant for the promotion to a su-
perpage.

• Mapping is within the kernel address space
On ARM, kernel pages are already mapped
using as much section mappings as possi-
ble. The mappings are then replicated in
each pmap.

Page table entry in the L2 under promotion is
also tested for reference and modification bits
as well as permission to write. Superpage is
preferred to be a read-only mapping to avoid
expensive, superpage-size transitions to a disk
on page-out. Therefore it is convenient to clear
the permission to write for a base page if it
has not been marked dirty already. All of the
mentioned tests apply to the first base page de-
scriptor in the set. This approach can reduce
overhead related to the unsuccessful promotion
attempt since it allows to quickly disregard in-
valid mappings and exit. However if the first
descriptor is suitable for the promotion then
the remaining 255 entries from the L2 table still
need to be checked

Apart from the above mentioned criteria
the area under superpage must satisfy the fol-
lowing conditions:

1. Continuity in the VA space

2. Continuity in the PA space
Physical addresses stored in the subse-
quent L2 descriptors must differ by the size
of the base page (4 KB).

3. Consistency of the pages’ attributes and
states

159

When all requirements are met then it is possi-
ble to create single 1 MB section mapping for a
given area. It is important that during promo-
tion process L2 table zone is not being deal-
located. Corresponding l2_bucket is rather
stashed to speed-up the superpage demotion in
the future.

The actual page promotion can be divided
into two stages:

• pmap_pv_promote_section()
At this point pv_entry related to the first
vm_page in a superpage is moved to an-
other list of PV associated with the 1 MB
physical frame. The remaining PV entries
can be deallocated.

• pmap_map_section()
The routine constructs the final section
mapping and inserts it to the L1 page de-
scriptor. Mapping attributes, access per-
missions and cache mode are identical with
all the base pages.

Successful promotion ends with the TLB inval-
idation which flushes old translations and al-
lows MMU to put newly created superpage to
the TLB.

4.2.3 Explicit Superpage Creation

Incremental reservation map population
is not always a necessity. In case of a map-
ping insertion for the entire virtual object it
is possible to determine the object’s size and
its physical alignment. The described situation
can take place when pmap_enter_object() is
called. If the object is at least of superpage size
and VM has performed the proper alignment it
is possible to explicitly map the object using
section mappings.

pmap_enter_section() has been imple-
mented to create a direct superpage map-
pings. The routine has to perform prelimi-
nary page classification similar to the one in
pmap_promote_section(). This time however,
it is not necessary to check any of the base pages

within the potential superpage since they do
not exist yet. Bits that still need to be tested
are:

• PV management status

• L1 descriptor status
The given L1 descriptor cannot be used for
a section mapping if it is already a valid
section or it is already serving as a page
directory for a L2 table.

Direct insertion of the mapping involves a
necessity to allocate new pv_entry for a
1 MB frame. This task is performed by
pmap_pv_insert_section() which may not
succeed. In case of failure the superpage can-
not be mapped, otherwise section mapping is
created immediately.

4.2.4 Superpage Demotion and Re-
moval

When there is a need to page-out or mod-
ify one of the base pages within the superpage
it is required to destroy a corresponding sec-
tion mapping. Lack of any mapping for a mem-
ory region that is currently in use would cause
a chain of expensive vm_fault() calls. De-
motion procedure (pmap_demote_section())
is designed to overcome this issue by recreating
L2 translation table in place of the removed L1
section.

There are two possible scenarios of the su-
perpage demotion:

1. Demotion of the page created as a result
of promotion.
In that case it is possible to reuse the al-
ready allocated l2_bucket that has been
stashed after the promotion. This scenario
has got two major advantages:

• No need for any memory allocation
for L2 directory and L2 table.

• If the superpage attributes have not
changed then there is no need to mod-
ify or fill the L2 descriptors

160

2. Demotion of the page that was directly in-
serted as a superpage.
This implies that there is no stashed L2
table and it needs to be allocated and cre-
ated from scratch. Any allocation failure
results in an immediate exit due to speed
restrictions. Sleeping is not an option.

The demotion routine has to check if the super-
page has exactly the same attributes and sta-
tus bits as the stashed (or newly created) L2
table entries. If not then the L2 entries need to
be recreated using current L1 descriptor. PV
entries also need to be allocated and recreated
using pv_entry linked with the 1 MB page. Fi-
nally when the L2 table is in place again, the
L1 section mapping can be fixed-up with the
proper L1 page directory entry and the corre-
sponding translation in the TLB ought to be
flushed.

The last function used for superpage dele-
tion is pmap_remove_section(). It is used
to completely unmap any given section map-
ping. Calling this function can speed-up
pmap_remove() routine if the removed area is
mapped with a superpage and the size of the
space to unmap is at least of superpage size.

4.2.5 Configuration and control

At the time when this work is written,
superpages support is disabled by default
in pmap-v6.c. It can be enabled in runtime
during system boot by setting a loader variable:

vm.pmap.sp_enabled=1

in loader.conf or it can be turned on
during compilation time by setting:

sp_enabled

variable from sys/arm/arm/pmap-v6.c to
a non-zero value.

System statistics related to the super-
pages utilization can be displayed by invoking:

sysctl vm.pmap

command in the terminal. The exemplary
output can be seen below:

vm.pmap.sp_enabled: 1
vm.pmap.section.demotions: 258
vm.pmap.section.mappings: 0
vm.pmap.section.p_failures: 301
vm.pmap.section.promotions: 1037

demotions – number of demoted superpages
mappings – explicit superpage mappings
p_failures– promotion attempts that failed
promotions– number of successful promotions

5 Results and benchmarks

The functionality has been extensively
tested using various benchmarks and tech-
niques. The performance improvement de-
pends to a large extent on the application be-
havior, usage scenarios and amount of available
memory in the system. Processes allocating
large areas of consistent memory or operating
on big sets of data will benefit more from su-
perpages than those using small, independent
chunks.

Presented measurements and benchmarks have
been performed on Marvell Armada XP (quad-
core ARMv7-compliant chip).

5.1 GUPS

The most significant results can be ob-
served using the Giga Updates Per Second
(GUPS) benchmark. GUPS measures how fre-
quently system can issue updates to randomly
generated memory locations. In particular it
measures both memory latency and bandwidth.
On multi-core ARMv7 platform, measured
CPU time usage and real time duration
dropped by 34%. Number of updates per-
formed in the same amount of time has in-
creased by 52%.

161

Figure 4: GUPS results.CPU time used [s],
number of updates performed [100000/s].

5.2 LMbench

LMbench is a popular suite of system per-
formance benchmarks. It is equipped with
the memory testing program and can be used
to examine memory latency and bandwidth.
Measured memory latency has dropped by
37,85% with superpages enabled. Memory
bandwidth improvement varied depending on
the type of operation and was in the range
from 2,26% for mmap reread to 8,44% for mem-
ory write. It is worth noting that LMbench
uses STREAM benchmark to measure mem-
ory bandwidth which uses floating point arith-
metic to perform the operations on memory.
Currently FreeBSD does not yet support FPU
on ARM what had a negative impact on the
results.

Mmap
reread
[MB/s]

Bcopy
(libc)
[MB/s]

Bcopy
(hand)
[MB/s] superpages

645,4 305,4 432,3
660,0 312,4 446,9 �

Table 1: LMbench. Memory bandwidth mea-
sured on various system calls.

Mem
read

[MB/s]

Mem
write
[MB/s]

Mem
latency
[ns] superpages

681 3043 238,8
696 3300 148,4 �

Table 2: LMbench. Memory bandwidth and
latency measured on memory operations.

The results summary is shown in Tables 1 and
2. Table 3 on the other hand shows the the per-
centage improvement of the parameters with
the best test results.

Mem
write %

Rand
mem latency %

8,44 37,85

Table 3: LMbench. Percentage improvement of
the selected parameters.

5.3 Self-hosted world build

Using superpages helped to reduce self-
hosted world build when using GCC. The re-
sults are summarized in Table 4. The time
needed for building the whole set of user appli-
cations comprising to the root file system has
dropped by 1 hour 22 minutes (20% shorter).
No significant change has been noted when us-
ing CLANG.

GCC CLANG superpages
6h 36min 6h 16min
5h 14min 6h 15min �

Table 4: Self-hosted make buildworld comple-
tion time.

5.4 Memory stress tests

Presented functionality has been also
tested in terms of overall stability and reliabil-
ity. For that purpose two popular stress bench-
marks have been used:

• forkbomb: forkbomb -M
Application can allocate entire available
memory using realloc() and access this
memory.

162

• stress: stress –vm 4 –vm-bytes 400M
Benchmark imposes certain types of
compute stress on the system. In
this case 4 processes were spinning on
malloc()/free() calls, each of which
working on 400 MB of memory.

No anomalies or instabilities were detected even
during long runs.

6 Future work

The presented functionality has signifi-
cant impact on system’s performance but does
not cover all of the hardware and OS capabili-
ties. There are possible ways of improvement.

Adding support for additional 64 KB page
size will further increase the amount of created
superpages, enabling a smoother and more effi-
cient process for the promotion from 4 KB small
page to 1 MB section. In addition, a larger
number of processes will be capable of taking
advantage from superpages if the required pop-
ulation map size is smaller.

In addition, current pmap(9) implementa-
tion uses PV entries to store some information
about the mapping type and status. This im-
plies the necessity to search through PV lists
on each promotion attempt. TEX (Type Exten-
sion) support would allow to move those addi-
tional bits to the page table entry descriptors
and lead to reduction of the promotion failure
penalty.

7 Conclusions

Presented work has brought the transpar-
ent superpages support to the ARM architec-
ture on FreeBSD. The paper described virtual
memory system from both OS and hardware
points of view. System’s bottle-necks and de-
sign constrains have been carefully described.
In particular the work has elaborated on the
TLB miss penalty and its influence on the over-
all system performance.

Mechanisms implemented during the
project met their objectives and provided per-
formance gain on the interface between CPU
and memory. This statement has been sup-
ported by various tests and benchmarks per-
formed on a real ARM hardware. Test re-
sults vary between different benchmarks but
improvement can be observed in all cases and
is at 20%.

Introduced superpages support has been
committed to the official FreeBSD SVN repos-
itory and is available starting from revision
254918.

8 Acknowledgments

Special thanks go to the following people:

Grzegorz Bernacki and Alan Cox, for all
the help and mentorship.
Rafał Jaworowski, mentor of this project.

Work on this project was sponsored by Semihalf
and The FreeBSD Foundation.

9 Availability

The support has been integrated into
the mainline FreeBSD 10.0-CURRENT and is
available with the FreeBSD 10.0-RELEASE.
The code can also be downloaded from the
FreeBSD main SVN repository.

References

[1] Juan E. Navarro, Transparent operating
system support for superpages, 2004

[2] The FreeBSD Documentation Project,
FreeBSD Architecture Handbook, 2000-
2006, 2012-2013

[3] Marshall Kirk McKusick, The Design and
Implementation of the FreeBSD Operating
System, 2004

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

How FreeBSD Boots: a soft-core MIPS perspective

Brooks Davis, Robert Norton, Jonathan Woodruff, Robert N. M. Watson

Abstract
We have implemented an FPGA soft-core, multithreaded,

64-bit MIPS R4000-style CPU called BERI to support
research on the hardware/software interface. We have
ported FreeBSD to this platform including support for mul-
tithreaded and soon multicore CPUs. This paper describes
the process by which a BERI system boots from CPU startup
through the boot loaders, hand off to the kernel, and en-
abling secondary CPU threads. Historically, the process of
booting FreeBSD has been documented from a user perspec-
tive or at a fairly high level. This paper aims to improve the
documentation of the low level boot process for developers
aiming to port FreeBSD to new targets.

1. Introduction
From its modest origins as a fork of 386BSD targeting Intel

i386 class CPUs, FreeBSD has been ported to a range of

architectures including DEC Alpha1, AMD x86_64 (aka

amd64), ARM, Intel IA64, MIPS, PC98, PowerPC, and

Sparc64. While the x86 and Alpha are fairly homogeneous

targets with mechanics for detecting and adapting to spe-

cific board and peripheral configurations, embedded systems

platforms like ARM, MIPS, and PowerPC are much more

diverse. Porting to a new MIPS board often requires adding

support for a new System on Chip (SoC) or CPU type with

different interrupt controllers, buses, and peripherals. Even

if the CPU is supported, boot loaders and associated kernel

calling conventions differ significantly between boards.

We have ported FreeBSD/MIPS to BERI, an open-source

MIPS R4000-style[1] FPGA-based soft-core processor that

we have developed. This required a range of work including

boot loader support, platform startup code, a suite of device

drivers (including the PIC), but also adapting FreeBSD’s

existing FDT support to FreeBSD/MIPS. We currently run

FreeBSD/BERI under simulation, on an Altera Stratix IV

FPGA on a Terasic DE4 FPGA board, and on an Xilinx

Virtex-5 FPGA on the NetFPGA-10G platform. The major-

ity of our peripheral work has been on simulation and the

DE4 platform. FreeBSD BERI CPU support is derived from

the MALTA port with some inspiration from the sibyte port.

Based on our experiences bringing up FreeBSD on BERI

we have documented the way we boot FreeBSD from the

firmware embedded in the CPU to userspace to provide

a new view on the boot process. FreeBSD is generally

very well documented between project documentation and

books like the Design and Implementation of the FreeBSD

Operating System [3], but detailed documentation of the

boot process has remained a gap. We believe this paper

well help porters gain a high level understanding of the

boot process and go allow interested users to understand the

overall process without the need to create an new port.

1Removed in 2006.

Figure 1: BERIpad with application launcher

The rest of this paper narrates the boot process with a

special focus on the places customization was required for

BERI. We begin by describing the BERI platform (Section

2), and then in detail documents the kernel architecture-

specific boot process for FreeBSD on BERI: boot loader

(Section 3) and kernel boot process (Section 4). In the in-

terest of brevity many aspects of boot are skipped and most

that are not platform or port-specific are ignored. Some

platform-specific components such as the MIPS pmap are

not covered. The goal is to provide a guide to those pieces

someone porting to a new, but relatively conventional MIPS

CPU would need to fill in. Porters interested in less con-

ventional CPUs will probably want to examine the NLM

and RMI ports in mips/nlm and mips/rmi for examples

requiring more extensive modifications.

2. The BERIpad platform

We have developed BERI as a platform to enable experi-

ments on the hardware-software interface such as our ongo-

ing work on hardware supported capabilities in the CHERI

CPU[5]. Our primary hardware target has been a tablet

based on the Terasic DE4 FPGA board with a Terasic

MTL touch screen and integrated battery pack. The de-

sign for the tablet has been released as open source at

http://beri-cpu.org/. The CPU design will be re-

leased in the near future. The modifications to FreeBSD—

except for MP—support have been merged to FreeBSD

10.0. The tablet and the internal architecture of BERI are

described in detail in the paper The BERIpad Tablet [2] The

following excerpt provides a brief overview of BERI and

the drivers we have developed.

The Bluespec Extensible RISC Implementation

(BERI) is currently an in-order core with a 6-

stage pipeline which implements the 64-bit MIPS

179

instruction set used in the classic MIPS R4000.

Some 32-bit compatibility features are miss-

ing and floating point support is experimental.

Achievable clock speed is above 100MHz on the

Altera Stratix IV and average cycles per instruc-

tion is close to 1.2 when booting the FreeBSD

operating system. In summary, the high-level de-

sign and performance of BERI is comparable to

the MIPS R4000 design of 1991, though the de-

sign tends toward extensibility and clarity over

efficiency in the micro-architecture.

...

We developed device drivers for three Altera IP

cores: the JTAG UART (altera jtag uart), triple-

speed MAC (atse), and SD Card (altera sdcard),

which implement low-level console/tty, Ethernet

interface, and block storage classes. In addition,

we have implemented a generic driver for Avalon-

attached devices (avgen), which allows memory

mapping of arbitrary bus-attached devices with-

out interrupt sources, such as the DE4 LED block,

BERI configuration ROM, and DE4 fan and tem-

perature control block.

Finally, we have developed a device driver for the

Terasic multitouch display (terasic mtl), which im-

plements a memory-mapped pixel buffer, system

console interface for the text frame buffer, and

memory-mapped touchscreen input FIFO. Using

this driver, UNIX can present a terminal interface,

but applications can also overlay graphics and

accept touch input.

In addition to the drivers described above, made extensive

modifications to the exiting cfi(4) (Common Flash Inter-

face) driver to fully support Intel NOR flash and improve

write performance.

2.1. Flat Device Tree

Most aspects of BERI board configuration is described in

a Flat Device Trees (FDT) which are commonly used on

PowerPC and ARM-based systems [4]. Currently a Device

Tree Blob (DTB) is built into each FreeBSD kernel and

describes a specific hardware configuration. Each DTB is

built from a device tree syntax (DTS) file by the device tree

compiler2 before being embedded in the kernel. Figure 2

exerpts the DTS file boot/fdt/dts/beripad-de4.dts

and includes the BERI CPU, 1GB DRAM, programmable

interrupt controller (PIC), hardware serial port, JTAG UART,

SD card reader, flash partition table, gigabit Ethernet, and

touchscreen.

3. The early boot sequence

The common FreeBSD boot sequence begins with CPU

firmware arranging to run the FreeBSD boot2 second-stage

boot loader which in turn loads /boot/loader which loads

2dtc(1)

model = " SRI / Cambridge Ber iPad (DE4) " ;

c o m p a t i b l e = " s r i −cambridge , b e r i p a d−de4 " ;

cpus {

cpu@0 {

dev ice−t y p e = " cpu " ;

c o m p a t i b l e = " s r i −cambridge , b e r i " ;

} ;

} ;

soc {

memory {

d e v i c e _ t y p e = " memory " ;

r e g = <0x0 0 x40000000 >;

} ;

b e r i p i c : be r ip i c@7f804000 {

c o m p a t i b l e = " s r i −cambridge , b e r i −p i c " ;

i n t e r r u p t −c o n t r o l l e r ;

r e g = <0 x7f804000 0 x400 0 x7f806000 0x10

0 x7f806080 0x10 0 x7f806100 0x10 >;

}

s e r i a l @ 7 f 0 0 2 1 0 0 {

c o m p a t i b l e = " ns16550 " ;

r e g = <0 x7f002100 0x20 >;

} ;

s e r i a l @ 7 f 0 0 0 0 0 0 {

c o m p a t i b l e = " a l t e r a , j t a g _ u a r t −11_0 " ;

r e g = <0 x7f000000 0x40 >;

} ;

sdcard@7f008000 {

c o m p a t i b l e = " a l t e r a , sdca rd_11_2011 " ;

r e g = <0 x7f008000 0x400 >;

} ;

f lash@74000000 {

p a r t i t i o n @ 2 0 0 0 0 {

r e g = <0x20000 0 xc00000 >;

l a b e l = " fpga0 " ;

} ;

p a r t i t i o n @ 1 8 2 0 0 0 0 {

r e g = <0x1820000 0 x027c0000 >;

l a b e l = " os " ;

} ;

} ;

e the rne t@7f007000 {

c o m p a t i b l e = " a l t e r a , a t s e " ;

r e g = <0 x7f007000 0 x400 0 x7f007500 0x8

0 x7f007520 0x20 0 x7f007400 0x8

0 x7f007420 0x20 >;

} ;

touchscreen@70400000 {

c o m p a t i b l e = " s r i −cambridge , mt l " ;

r e g = <0x70400000 0 x1000

0 x70000000 0 x177000 0 x70177000 0x2000 >;

} ;

} ;

Figure 2: Excerpt from Flat Device Tree (FDT) description of
the DE4-based BERI tablet.

180

the kernel and kernel modules. Finally the kernel boots

which is described in Section 4.

3.1. Miniboot

At power on or after reset, the CPU sets the program counter

of at least one thread to the address of a valid program.

From the programmer perspective the process by which this

occurs is essentially magic and of no particular importance.

Typically the start address is some form of read-only or flash

upgradable firmware that allows for early CPU setup and

may handle details such as resetting cache state or pausing

threads other than the primary thread until the operating

system is ready to handle them. In many systems, this

firmware is responsible for working around CPU bugs.

On BERI this code is known as miniboot for physical

hardware and simboot for simulation. Miniboot is compiled

with the CPU as a read-only BRAM. It is responsible for

settings registers to initial values, setting up an initial stack,

initializing the cache by invalidating the contents, setting

up a spin table for MP boot, running code to initialize the

HDMI output port on the DE4 tablet, and loading a kernel

from flash or waiting for the next bit of code to be loaded

by the debug unit and executing that. With BERI we are

fortunate to not need to work around CPU bugs in firmware

since we can simply fix the hardware.

Miniboot’s kernel loading and boot behavior is controlled

by two DIP switches on the DE4. If DIP0 is off or mini-

boot with compiled with -DALWAYS_WAIT then we spin in

a loop waiting for the general-purpose register t1 to be set

to 0 using JTAG. This allows the user to control when the

board starts and given them an opportunity to load a kernel

directly to DRAM before boot proceeds. DIP1 controls the

relocation of a kernel from flash. If the DIP switch is set,

the kernel is loaded from a flash at offset of 0x2000000 to

0x100000 in DRAM. Otherwise, the user is responsible for

loading a kernel to DRAM by some other method. Currently

supported mechanisms are described in the BERI Software

Reference [7].

The kernel loading functionality occurs only on hardware

thread 0. In other hardware threads, miniboot skips this step

and enter a loop waiting for the operating system to send

them a kernel entry point via the spin-table. Multithread and

multicore boot is discussed in more detail in section 4.3.

Before miniboot enters the kernel it clears most registers

and sets a0 to argc, a1 to argv, a2 to env, and 3 to the size

of system memory. In practice argc is 0 and argv and env

are NULL. It then assumes that an ELF64 object is located at

0x100000, loads the entry point from the ELF header, and

jumps to it.

We intend that miniboot be minimal, but sufficiently flex-

ible support debugging of various boot layouts as well as

loading alternative code such as self contained binaries. This

allows maximum flexibility for software developers who

may not be equipped to generate new hardware images.

3.2. boot2

On most FreeBSD systems two more boot stages are inter-

posed between the architecture dependent boot code and the

ffff ffff
03fe 0000 – Reserved for boot2–

03fd ffff

0200 0000

– Kernel –

01ff ffff

0182 0000
– Reserved for OS –

0181 ffff

00c2 0000

– FPGA Image 2 –

00c1 ffff

0002 0000

– FPGA Image 1 –

0001 ffff
0000 0000 – Terasic reserved –

Figure 3: Layout of the DE4 flash

kernel. The first of these is boot23, the second stage boot-

strap, which has a mechanism for accessing local storage

and has code for read-only access to a limited set of file sys-

tems (usually one of UFS or ZFS). Its primary job is to load

the loader and to pass arguments to it. By default it loads

/boot/loader, but the user can specify an alternative disk,

partition, and path.

We have ported boot2 to BERI, creating three ‘micro-

drivers’ allowing JTAG UART console access, and use of

CFI or the SD card to load /boot/loader or the kernel.

These microdrivers substitute for boot device drivers pro-

vided by the BIOS on x86 or OpenFirmware on SPARC.

It also supports jumping to an instance of /boot/loader

loaded via JTAG. In our current implementation, boot2 is

linked to execute at 0x100000 and loaded from CFI flash

as the kernel currently is allowing it to be used with an un-

modified miniboot. In the future, we plan to place a similar

version of boot2 at 0x03fe0000, a 128K area reserved for

its use. This will allow a normal filesystem to be placed in

CFI flash from 0x1820000, which might contain the full

boot loader, a kernel, etc. Currently, we use boot2 to load

/boot/loader from the SD card, which offers an experi-

ence more like conventional desktop/server platforms than a

conventional embedded target.

Many versions of boot2 exist, targeted at different archi-

tectures. The version of boot2 in BERI is derived from the

x86 boot2, and is hence (marginally) more feature-rich than

ones targeted at more space-constrained embedded architec-

tures.

3boot(8)

181

Figure 4: FreeBSD loader boot menu

3.3. loader

The third common boot stage is the loader(8). The loader

is in effect a small kernel whose main job is to set up the

environment for the kernel and load the kernel and any

configured modules from the disk or network. The loader

contains a Forth interpreter based on FICL4. This interpreter

it used to provide the boot menu shown in Figure 4, parses

configuration files like /boot/loader.conf, and imple-

ments functionality like nextboot(8). In order to do this,

the loader also contains drivers to access platform-specific

devices and contains implementations of UFS and ZFS with

read and limited write support. On x86 systems that means

BIOS disk access and with the pxeloader network access

via PXE. On BERI this currently includes a basic driver for

access to the CFI flash found on the DE4.

We have ported the loader to FreeBSD/MIPS and share

the SD card and CFI microdrivers with boot2 to allow

kernels to be loaded from CFI flash or SD card. We currently

load the kernel from the SD card. We hope to eventually

add a driver for the onboard Ethernet device to allow us to

load kernels from the network.

The loader’s transition to the kernel is much the same as

miniboot. The kernel is loaded to the expected location in

the memory, the ELF header is parsed, arguments are loaded

into registers, and the loader jumps into the kernel.

3.4. The bootinfo structure

In order to facilitate passing information between boot2,

/boot/loader, and the kernel a pointer to a bootinfo

structure is between them allowing information such as

memory size, boot media type, and the locations of

preloaded modules to be shared. In the future we will add

support for passing a pointer to the FDT device database

that will be embedded in the CPU or stored separately in

flash.

4. The path to usermode
This section narrates the interesting parts of the FreeBSD

boot process from a MIPS porter’s perspective. In the elec-

tronic version of this document most of the paths, func-

tion names, and symbols are links to appropriate parts of

http://fxr.watson.org to enable further exploration.

4http://ficl.sourceforge.net

4.1. Early kernel boot

The FreeBSD MIPS kernel enters at _start in the _locore

function defined in mips/mips/locore.S. _locore per-

forms some early initialization of the CP0 registers, sets up

an initial stack and calls the platform-specific startup code

in platform_start.

On BERI platform_start saves the argument list, en-

vironment, and pointer to struct bootinfo passed by

the loader. BERI kernels also support an older boot in-

terface, in which memory size is passed as the fourth ar-

gument (direct from miniboot). It then calls the common

mips function mips_postboot_fixup which provides ker-

nel module information for manually loaded kernels and

corrects kernel_kseg0_end (the first usable address in

kernel space) if required. Per CPU storage is then ini-

tialized for the boot CPU by mips_pcpu0_init. Since

BERI uses Flat Device Tree (FDT) to allow us to config-

ure otherwise non-discoverable devices platform_start

then the locates the DTB and initializes FDT. This is the

norm for ARM and PowerPC ports, but is currently uncom-

mon on MIPS ports. We expect it to become more popu-

lar over time. The platform_start function then calls

mips_timer_early_init to set system timer constants,

currently to a hardcoded 100MHz, eventually this will come

from FDT. The console is set up by cninit and some de-

bugging information is printed. The number of pages of

real memory is stored in the global variable realmem5. The

BERI-specific mips_init6 function is then called to do the

bulk of remaining early setup.

BERI’s mips_init is fairly typical. First, mem-

ory related parameters are configured including laying

out the physical memory range and setting a number

of automatically tuned parameters in the general func-

tions init_param1 and init_param2. The MIPS func-

tion mips_cpu_init performs some optional per-platform

setup (nothing on BERI), identifies the CPU, configures

the cache, and clears the TLB. The MIPS version of

pmap_bootstrap is called to initialize the pmap. Thread 0

is instantiated by mips_proc0_init which also allocates

space for dynamic per CPU variables. Early mutexs includ-

ing the legacy Giant lock are initialized in mutex_init and

the debugger is initialized in kdb_init. If so configured

the kernel may now drop into the debugger or, much more

commonly, return and continue booting.

Finally mips_timer_init_params is called to finish

setting up the timer infrastructure before platform_start

returns to _locore. _locore switches to the now config-

ured thread0 stack and calls mi_startup never to return.

4.2. Calling all SYSINITS

The job of mi_startup is to initialize all the kernel’s sub-

systems in the right order. Historically mi_startup was

called main and the order of initialization was hard coded.

5The btoc macro converts bytes to clicks which in FreeBSD are single

pages. Mach allowed multiple pages to be managed as a virtual page.
6Most ports have one of these, but it seems to be misnamed as it is not

MIPS generic code.

182

s t a t i c vo id
p r i n t _ c a d d r _ t (void ∗ d a t a)

{

p r i n t f ("%s " , (char ∗) d a t a) ;

}

SYSINIT (announce , SI_SUB_COPYRIGHT ,

SI_ORDER_FIRST , p r i n t _ c a d d r _ t ,

c o p y r i g h t) ;

Figure 5: Implementation of copyright message printing on
FreeBSD boot.

This was obviously not scalable so a more dynamic registra-

tion mechanism called SYSINIT(9) was created. Any code

that needs to be run which at startup can use the SYSINIT

macro to cause a function to be called in a sorted order to

boot or on module load. The sysinit implementation relies

on the ‘linker set’ feature, in which constructors/destructors

for kernel subsystems and modules are tagged in the ELF

binary so that the kernel linker can find them during boot,

module load, module unload, and kernel shutdown.

The implementation of mi_startup is simple. It sorts

the set of sysinits and then runs each in turn marking each

done when it is complete. If any modules are loaded by

a sysinit, it resorts the set and starts from the beginning

skipping previous run entries. The end of mi_startup

contains code to call swapper, this code is never reached

as the last sysinit never return. One implementation detail

of note in mi_startup is the use of bubble sort to sort the

sysinits due to the fact that allocators are initialized via

sysinits and thus not yet available.

Figure 5 shows a simple example of a sysinit. In this

example announce is the name of the individual sysinit,

SI_SUB_COPYRIGHT is the subsystem, SI_ORDER_FIRST

is the order within the subsystem, print_caddr_t is the

function to call, and copyright is an argument to be passed

to the function. A complete list of subsystems and orders

within subsystems can be found in sys/kernel.h. As

of this writing there are more than 80 of them. Most are

have little or no port-specific function and thus are beyond

the scope of this paper. We will highlight sysinits with

significant port-specific content.

The first sysinit of interest is SI_SUB_COPYRIGHT. It does

not require porting specifically, but reaching it and seeing

the output is a sign of a port nearing completion since it

means low level consoles work and the initial boot described

above is complete. The MIPS port has some debugging

output earlier in boot, but on mature platforms the copyright

message is the first output from the kernel. Figure 6 shows

the three messages printed at SI_SUB_COPYRIGHT.

The next sysinit of interest to porters is SI_SUB_VM. The

MIPS bus_dma(9) implementation starts with a set of stati-

cally allocated maps to allow it to be used early in boot. The

function mips_dmamap_freelist_init adds the static

maps to the free list at SI_SUB_VM. The ARM platform

does similar work, but does require malloc and thus runs

busdma_init at SI_SUB_KMEM instead.

Further bus_dma(9) initialization takes place at

SI_SUB_LOCK in the platform-specific, but often identical,

init_bounce_pages function. It initializes some counters,

lists, and the bounce page lock.

All ports call a platform-specific cpu_startup func-

tion at SI_SUB_CPU set up kernel address space and per-

form some initial buffer setup. Many ports also per-

form board, SoC, or CPU-specific setup such as initializ-

ing integrated USB controllers. Ports typically print de-

tails of physical and virtual memory, initialize the kernel

virtual address space with vm_ksubmap_init, the VFS

buffer system with bufinit, and the swap buffer list with

vm_pager_bufferinit. On MIPS the platform-specific

cpu_init_interrupts is also called to initialize interrupt

counters.

Most platforms have their own sf_buf_init routine to

allocate sendfile(2) buffers and initialize related locks.

Most of these implementations are identical.

The bus hierarchy is established and device probing is

performed at the SI_SUB_CONFIGURE stage (aka autoconfig-

uration). The platform-specific portions of this stage are the

configure_first function called at SI_ORDER_FIRST

which attaches the nexus bus to the root of the device

tree, configure which runs at SI_ORDER_THIRD and calls

root_bus_configure to probe and attach all devices,

and configure_final which runs at SI_ORDER_ANY

cninit_finish to finish setting up the console with

cninit_finish, and clear the cold flag. On MIPS and

some other platforms configure also calls intr_enable

to enable interrupts, A number of console drivers complete

their setup with explicit sysinits at SI_SUB_CONFIGURE and

many subsystems like CAM and acpi(4) perform their

initialization there.

Each platform registers the binary types it supports at

SI_SUB_EXEC. The primarily consists of registering the ex-

pected ELF header values. On a uniprocessor MIPS this is

the last platform-specific sysinit.

The final sysinit is an invocation of the scheduler

function at SI_SUB_RUN_SCHEDULER which attempts to

swap in processes. Since init(8) was previously cre-

ated by create_init at SI_SUB_CREATE_INIT and made

runnable by kick_init at SI_SUB_KTHREAD_INIT start-

ing the scheduler results in entering userland.

4.3. Multiprocessor Support

Multiprocessor systems follow the same boot process as

uniprocessor systems with a few added sysinits to enable

and start scheduling the other hardware threads. These

threads are known as application processors (APs).

The first MP-specific sysinit is a call to mp_setmaxid

at SI_SUB_TUNABLES to initialize the mp_ncpus and

mp_maxid variables. The generic mp_setmaxid func-

tion calls the platform-specific cpu_mp_setmaxid.

On MIPS cpu_mp_setmaxid calls the port-specific

platform_cpu_mask to fill a cpuset_t with a mask of

all available cores or threads. BERI’s implementation

extracts a list of cores from the DTB and verifies that they

support the spin-table enable method. It further verifies that

the spin-table entry is properly initialized or the thread is

183

Copyright (c) 1992-2013 The FreeBSD Project.

Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994

The Regents of the University of California. All rights reserved.

FreeBSD is a registered trademark of The FreeBSD Foundation.

Figure 6: Copyright and trademark messages in FreeBSD 10

s t r u c t s p i n _ e n t r y {

u i n t 6 4 _ t e n t r y _ a d d r ;

u i n t 6 4 _ t a0 ;

u i n t 3 2 _ t r s v d 1 ;

u i n t 3 2 _ t p i r ;

u i n t 6 4 _ t r s v d 2 ;

} ;

Figure 7: Definition of a spin_entry with explicit padding
and the argument variables renamed to match
MIPS conventions.

ignored.

The initialization of APs is accomplished by the

mp_start function called at SI_SUB_CPU after

cpu_startup. If there are multiple CPUs it calls

the platform-specific cpu_mp_start and upon return

prints some information about the CPUs. The MIPS

implementation of cpu_mp_start iterates through the list

of valid CPU IDs as reported by platform_cpu_mask

and attempts to start each one except it self as determined

by platform_processor_id7 with the platform-specific

start_ap. The port-specific platform_start_ap’s job

is to cause the AP to run the platform-specific mpentry.

When runs successfully, it increments the mp_naps variable

and start_ap waits up to five seconds per AP for this to

happen before giving up on it.

A number of mechanisms has been implemented to in-

struct a CPU to start running a particular piece of code. On

BERI we have chosen to implement the spin-table method

described in the ePAPR 1.0 specification[4] because it is

extremely simple. The spin-table method requires that

each AP have an associated spin_entry structure located

somewhere in the address space and for that address to

be recorded in the DTB. The BERI specific definition of

struct spin_entry can be found in Figure 7. At boot the

entry_addr member of each AP is initialized to 1 and the

AP waits for the LSB to be set to 0 at which time it jumps to

the address loaded in entry_addr passing a0 in register a0.

We implement waiting for entry_addr to change with a

loop in miniboot. In BERI’s platform_cpu_mask we look

up the spin_entry associated with the requested AP, set

the pir member to the CPU id and then assign the address

of mpentry to the entry_addr member.

The MIPS implementation of mpentry is assembly

in mips/mips/mpboot.S. It disables interrupts, sets up

a stack, and calls the port-specific platform_init_ap

to set up the AP before entering the MIPS-specific

smp_init_secondary to complete per-CPU setup and

await the end of the boot process. A typical MIPS im-

plementation of platform_init_ap sets up interrupts on

7Implemented in mips/beri/beri_asm.S on BERI.

the AP and enables the clock and IPI interrupts. On BERI

we defer IPI setup until after device probe because our pro-

grammable interrupt controller (PIC) is configured as an

ordinary device and thus can not be configured until after

SI_SUB_CONFIGURE.

The MIPS-specific smp_init_secondary function ini-

tializes the TLB, setups up the cache, and initializes per-

CPU areas before incrementing mp_naps to let start_ap

know that it has finished initialization. It then spins waiting

for the flag aps_ready to be incremented indicating that the

boot CPU has reached SI_SUB_SMP as described below. On

BERI it then calls platform_init_secondary to route

IPIs to the AP and set up the IPI handler. The AP then sets

its thread to the per-CPU idle thread, increment’s smp_cpus,

announces it self on the console, and if it is the last AP to

boot, sets smp_started to inform release_aps that all

APs have booted and the smp_active flag to inform a few

subsystems that we are running with multiple CPUs. Unless

it was the last AP to boot it spins waiting for smp_started

before starting per-CPU event timers and entering the sched-

uler.

The final platform-specific sysinit subsystem is

SI_SUB_SMP which platform-specific release_aps

functions are called to enable IPIs on the boot CPU, inform

previously initialized APs that they can start operating, and

spin until they do so as described above. In the MIPS case

this means atomically setting the aps_ready flag to 1 and

spinning until smp_started is non-zero.

4.4. A word on IPIs

In multiprocessor (MP) systems CPUs communicate with

each other via Inter-Processor Interrupts (IPIs). A number

of IPI mechanisms exist, with FreeBSD MIPS using the sim-

plest model, a per-CPU integer bitmask of pending IPIs and

a port-specific mechanism for sending an interrupt, almost

always to hardware interrupt 4. This is implemented by the

ipi_send which is used by the public ips_all_but_self,

ipi_selected, and ipi_cpu functions. MIPS IPIs are

handled by mips_ipi_handler which clears the interrupt

with a call to platform_ipi_clear, reads the set of pend-

ing IPIs, and handles each of them.

On BERI IPIs are implemented using the BERI

PIC’s soft interrupt sources. IPIs are routed by

beripic_setup_ipi, sent by beripic_send_ipi, and

cleared by beripic_clear_ipi. These functions are ac-

cessed via kobj(9) through the FDT_IC interface defined

in dev/fdt/fdt_ic_if.m. The internals of BERI PIC are

described in the BERI Hardware Reference[6].

184

5. Conclusion
Porting FreeBSD to a new CPU, even within a previously

supported family, is a significant undertaking. We hope

this paper will help prospective porters orient themselves

before they begin the process. While we have focused on a

MIPS ports, the code structure in other platforms–especially

ARM–is quite similar.

5.1. Acknowledgments

We would like to thank our colleagues - especially Jonathan

Anderson, David Chisnall, Nirav Dave, Wojciech Koszek,

Ben Laurie, A Theodore Markettos, Simon W. Moore,

Steven J. Murdoch, Peter G. Neumann, Philip Paeps,

Michael Roe, and Bjoern Zeeb.

This work is part of the CTSRD Project that is spon-

sored by the Defense Advanced Research Projects Agency

(DARPA) and the Air Force Research Laboratory (AFRL),

under contract FA8750-10-C-0237. The views, opinions,

and/or findings contained in this report are those of the

authors and should not be interpreted as representing the

official views or policies, either expressed or implied, of

the Defense Advanced Research Projects Agency or the

Department of Defense.

References
[1] J. Heinrich, MIPS R4000 Microprocessor User’s Manual, 1994, sec-

ond Edition.
[2] A. T. Markettos, J. Woodruff, R. N. M. Watson, B. A. Zeeb, B. Davis,

and S. W. Moore, “The BERIpad tablet: Open-source construction,
CPU, OS and applications,” 2013.

[3] M. K. McKusick and G. V. Neville-Neil, The Design and Implementa-
tion of the FreeBSD Operating System. Pearson Education, 2004.

[4] Power.org, Power.org Standard for Embedded Power Architecture
Platform Requirements (ePAPR), 2008.

[5] R. Watson, P. Neumann, J. Woodruff, J. Anderson, R. Anderson,
N. Dave, B. Laurie, S. Moore, S. Murdoch, P. Paeps et al., “CHERI: A
Research Platform Deconflating Hardware Virtualization and Protec-
tion,” in Workshop paper, Runtime Environments, Systems, Layering
and Virtualized Environments (RESoLVE 2012), 2012.

[6] R. N. M. Watson, D. Chisnall, B. Davis, W. Koszek, S. W. Moore,
S. J. Murdoch, R. Norton, and J. Woodruff, “BERI bluespec extensi-
ble RISC implementation: Hardware reference,” 2014, forthcoming
publication.

[7] R. N. M. Watson, D. Chisnall, B. Davis, W. Koszek, S. W. Moore,
S. J. Murdoch, and J. Woodruff, “BERI bluespec extensible RISC
implementation: Software reference,” 2014, forthcoming publication.

185

186

Adapting OSX to the enterprise

Jos Jansen
Deputy Director of Engineering,

Snow B.V., Geldermalsen, The Netherlands

Abstract

How we try to manage OSX desktops while
maintaining security and preserving our sanity

In this paper I examine ways and means of
deploying and managing OSX in a business envi-
ronment while taking account of the first five of
the Twenty Critical Security Controls for Effective
Cyber Defense1 in a cost-effective manner.

I will describe efforts to steadily and gradually
improve the quality of our desktop and server
infrastructure with respect to ease of administration
and security, leveraging well-understood tools and
avoiding or mitigating excessive contraints on user-
friendliness.

1. About Snow

Snow B.V. was established in 1997 and has grown
into the largest UNIX contractor in The Netherlands,
employing approximately 110 engineers and consul-
tants and some 30 office staff. Among our customers
are government institutions, major Dutch corpora-
tions and multinational enterprises and a number of
NGO. We specialise in UNIX and network adminis-
tration, storage and security.

2. The network

The network is quite simple and consists of
VLANs for consultants and engineers, the DMZ and

1. Twenty Critical Security Controls for Effective Cyber De-
fense, http://www.sans.org/critical-security-controls/

wireless guests. In addition, there is a “no man’s
LAN” for services which need to be accessible from
all other VLANs and an office VLAN behind its
own packet filter. 802.1x with FreeRadius and an
OpenLDAP-backend is active on all points of access
to the LANs.

3. The server side

We run Linux on a number of (mostly virtualized)
servers. There are good reasons for this; a majority of
our engineers are (to my regret) much more familiar
with Linux than with the BSD family and receive
assignments for improvement projects when between
jobs.

Most servers which I truly care about — i.e. those
providing mission-critical services in the protected
LAN — run FreeBSD or, in the case of bound-
ary control, OpenBSD. For general usage I prefer
FreeBSD as the ports tree is rather more verdant and
I can have ZFS. These servers are managed with the
community edition of CFEngine2 with respect to file
and directory permissions, checksums of important
files, restarting processes (which, of course, should
never happen, as FreeBSD processes aren’t supposed
to crash), the propagation of public keys and the
maintenance of certain elementary configuration files.
This is simple and essentially foolproof, provided that
all amendments to the CFEngine configuration files
have been properly tested prior to deployment.

3.1. Storage

We are not a very large company; our office doc-
ument history and databases since 1997 occupy less

2. CFEngine, http://cfengine.com

187

than 100GB of storage. However, we are required by
law to maintain a mail archive which takes another
300GB. We are very concerned with the mail archive
as office staff are apt to permanently delete emails
accidentally and we may want it back months or years
later.3

As for the mail store for the IMAP server, 270 GB
sufficed per September 2013 for all user accounts but
this grew to 307 GB at the beginning of this year.
There is some redundancy as I provide separate PDA
accounts upon request to office employees.

3.1.1. Why PDA accounts?. Very early on, when I used
primitive smartphones over 2G connections, I found that it
was not wise to keep a full cache of an IMAP mail store on
a mobile device, and the benefits of using an Apple iPhone
have not convinced me of the opposite. Therefore I use
ports/procmail to copy incoming mail to a PDA mailbox
where I could delete mail to my satisfaction.

Users now are entitled to an optional PDA mail account
in the form of pdaUSER@snow.nl and are free to delete
mail from this account; what they think of as their “desk-
top” mail store is not affected.

In theory, therefore, I could run the entire com-
pany off a machine with a 1 TB disk.

In practice, however, I need a huge amount of
storage to serve all LANs in a secure and redundant
manner; OSX home directories in particular are hor-
rendous in size.

I started out with 2 RAID cabinets with a Su-
perMicro main board and 48G of RAM (ZFS is
greedy), triple-mirrored 2TB disks, an Intel SSD as
L2ARC device and two small Intel SSD as mirrored
log devices. For historical reasons I ran the business
directories on a UFS-volume on ZFS as ZFS ACL
are not quite compatible with POSIX ACL; this has
since been corrected as the POSIX ACL were too
labour-intensive to maintain.

It has been established that a local LDAP replica
is indispensable; just try to run a recursive stat(1) on
a directory tree without one. I run replicas on all
servers which require access to LDAP user data (and,

3. You are advised to excercise great caution when searching
mail archives. Privacy laws may apply in your jurisdiction and a
protocol should most likely be observed when performing searches
for either discovery or recovery.

of course, have very tight ACL on machines where
only subsets of LDAP user data are needed).

You are advised, by the way, to cut down on
OpenLDAP log level; the default log level may make
your loghost very unhappy (see below under 3.3).

But there is a lot more to be done in order to create
a resilient, scalable and secure infrastructure:

• backup and recovery
• logging
• monitoring and event management
• configuration management

3.2. Backup and recovery

This not discussed in great detail in this paper as
it is a well-trodden path. All backups are encrypted
(and decrypted in a test pass) and the backup media is
stored off-site. By necessity the encryption passphrase
is stored on the backup server and I intend to
improve on this a bit. Disaster recovery scenarios
exist (these include the quick configuration of spare
Juniper switches from backups) but are, for various
reasons, out of scope.

3.3. Logging

Logging is an essential element of security, and
therefore you may desire to log all you can get. This is
surprisingly expensive; collecting all logging from all
OpenLDAP replicas, bind replicas with query logging
enabled and FreeRadius can suffocate your loghost
very quickly unless log levels are sanitized.

At the very least, collect the following:

• dhcpd
• named queries — we want to know who’s con-

tacting a command and control server
• pflog
• mail server logs.4

4. Not so much for security as for being able to trace misdirected
mail. Mail address autocompletion is evil, as is the practice of some
major enterprises to let MS Exchange expose internal host names
which, of course, are unresolvable.

188

What to do with the log files?

grep, awk and sed are always available
and are the tools of first resort.
We recommend Splunk5 to customers but
this tool is not inexpensive and I have no
business case for the procurement of a
license.

However, sysutils/logstash6 in combination
with Kibana7 looks promising if you’re
prepared to live with Java. A grep filter
in logstash suffices to hide events of low
relevance.

grep {
match => ["%{syslog_program}", \

"nfsen"]
negate => true
}

It does no harm, by the way, to be aware that not
all ports provide a proper newsyslog rule. This is also
true for many Linux packages.

Your loghost should be protected to an extreme
degree and the compressed logs should be written to
read-only media once a month. 8

3.4. Monitoring and event management

We use Zabbix9 to monitor all servers and essential
services provided by these machines, plus certain
environmental values such as the temperature in our
server room. Zabbix has been configured to send
alerts to a couple of mail addresses including an SMS
server.

3.4.1. UPS. A power failure is, of course, the
supreme event. We suffered an extended power fail-
ure a few years ago at our old premises when a

5. Splunk, http://www.splunk.com
6. sysutils/logstash, http://logstash.net
7. Kibana, http://kibana.org
8. A protocol should exist with regard to the destruction of old

media. I dare not suggest a rule of thumb here and I suggest that
you merely ensure that a protocol with regard to the preservation
and destruction of log files exists and has been endorsed (signed)
by very senior management.

9. Zabbix, http://www.zabbix.com

Royal Dutch Army Apache helicopter knocked over
a power pylon near Neerijnen, NL.10

sysutils/upsmon11 is configured to shut down all
clients after 5 minutes and storage servers after 10
minutes as I do not desire a fully drained UPS when
the power comes back on. Your mileage may vary;
it may take more than 5 minutes to shut down all
virtual machines in your LAN. If you install UPS
then do not forget to connect all your core switches
and all devices needed to send alerts, otherwise the
shutdown signals will never be communicated to the
clients and administrators.

We have no business case for a backup generator;
keeping a couple of servers alive is meaningless if
there is no way to heat and light part of the office
and to power a couple of desktops and a coffeemaker.
Essential services such as billing and banking are
SAAS or web-based, anyway.

3.5. Configuration Management

All servers are managed with CFEngine12 with
respect to:

• the verification and correction of file and direc-
tory permissions;
• the verification of checksums of important files;
• the restarting of processes (should never hap-

pen);
• the propagation of certain public keys;
• the editing of configuration files,

and other minor adjustments. You are advised to
mount file systems on SSD-devices with a noatime
flag if the tripwire function is used. More about
CFEngine in 5.7.

10. No injuries except to some careers after court martial.
11. sysutils/upsmon, http://www.networkupstools.org
12. CFEngine, http://cfengine.com

189

4. Security

4.1. Inventory of Authorized and Unautho-
rized Devices

This is SANS-20 Critical Control #1. At our office,
IEEE 802.1x13 is the first line of defence.

I run the occasional security/nmap scan but mainly
rely on net-mgmt/arpalert for the detection of un-
known devices.14

As a rule, any MAC address which is not in
my well-protected dhcpd.conf and whose IP address
cannot be resolved is regarded as an anomaly deserv-
ing investigation. All ARP-detection utilities require
tweaking in environments where jails are run on
aliased interfaces. If you use arpalert the ip_change
flag is indispensable. I am aware, as you should be,
that this is far from perfect.

For the detection of rogue DHCP-servers, net-
mgmt/dhcdrop is useful as it will effectively disable
them. Do not play around with this tool in a pro-
duction environment as it works very well indeed.

4.2. Inventory of Authorized and Unautho-
rized Software

This is SANS-20 Critical Control #2.

Creating software inventories and enforcing com-
pliance with a baseline is surprisingly difficult in real
life, unless a system with just the distribution binaries
is good enough for you. Such a system may, indeed,
give you much more than you desire — Postfix on
RHEL, for instance, brings in a MySQL runtime
library.

Few systems are built to be exactly the same,
but all should be built from a certain baseline – an
xxBSD-distribution or a Linux kickstart of a minimal
installation for a given flavour. If you document a

13. IEEE 802.1x, http://www.ieee802.org/1/pages/802.1x-2004.
html

14. MAC addresses can be spoofed and therefore 802.1x is a
must-have.

baseline your systems are close to compliance with
this control but there is no way you will be fully
compliant.

4.3. Continuous Vulnerability Assessment
and Remediation

This is SANS-20 Critical Control #4.

In a nutshell, this refers to the periodic scanning of
hosts for vulnerabilities, preferaby using an SCAP15-
validated tool. Such tools are generally quite expen-
sive; we’ve investigated some of the offerings and
software from Tenable, Saint and Tripwire (enterprise
version) look promising. Finding code-based vulner-
abilities (CVE) is not something most of us are good
at, so read your mailing lists.

Fixing configuration-based vulnerabilities (CCE) is
less complicated if a solid configuration management
infrastructure is in place.

4.4. Malware Defenses

This is SANS-20 Critical Control #5; for reasons of
space and because this is a relatively well-understood
topic, I treat this topic as out of scope in the server
ecology.

4.5. Boundary Defense

This is SANS-20 Critical Control #13, Boundary
Defense and, strictly speaking, out of scope. But we
have regarded packet filters as kind of very important
since 1997.

We maintain two packet filters: between our gate-
way and the rest of the world and between our main
gateway and the office LAN. At the moment both
are OpenBSD 5.4 on USB drives built with flashrd16.
I may eventually replace one or both with a second-
generation firewall.

15. SCAP, http://scap.nist.gov
16. flashrd, http://www.nmedia.net/flashrd/

190

4.5.1. Block and log. Block all inbound traffic except
when permitted and log. It is not an error to be too
restrictive.

Since mid-2012 I’ve blocked all traffic from coun-
tries which are not credibly of interest to Snow and
are major sources of malware and cyber attacks,17 and
a table with known bad hosts is updated frequently
from Emerging Threats18 by cron(1).19

As we publish an LPIC-220 Exam Prep book this
has caused a few issues. For instance, I block all traffic
from Brazil, a notorious source of SPAM, abuse and
other evil. Someone from that country wanted to
read our book but was blocked; her e-mail was also
blocked until she mailed us from gmail.com and I
unblocked the brazil range for port 80.

Block all outbound traffic out except when permit-
ted and log.21

This, again, increases the load on your loghost (and
your packet filter) but the information gathered may
be of immense value.

Why
At a point in time I received warnings,
through our ISP, from law enforcement that
connections were made from our gateway
to a well-known C&C. Only by logging all
DNS queries and all outgoing connections
was I able to track down the originating
workstation. This did not take very long as
the search could quickly be narrowed down
to our three Windows virtual machines.

17. Note that the Country IP Block tables available on the
internet are not ncessarily reliable. I have good reason to believe
that at least in Europe there is some informal commerce in IPv4
addresses.

18. Emerging Threats, http://rules.emergingthreats.net/
fwrules/emerging-Block-IPs.txt

19. By the way, there are subtle but lethal differences between
bash and ksh. As I regard portability quite highly, the Korn shell is
used as standard scripting shell on all xxBSD-systems. On FreeBSD
this requires a custom install and a minor edit of /etc/shells which
is handled by CFEngine, discussed below.

20. LPIC-2, http://lpic2.unix.nl
21. Privacy legislation in your jurisdiction should be most care-

fully read and understood.

5. Desktops

5.1. A brief history of desktops

In 1997 all office staff were familiar with a terminal
interface, emacs and LATEX, and were given XDM and
a simple desktop menu the next year.

This is an instance of simplicity; most configuration
was handled by a tree of Lisp files somewhere in
/usr/local and a longish /etc/profile and all complexity
was hidden from the user.

The employment of new salespersons and office
staff resulted in growth but also proved that XDM,
mh-mail and Gnumeric had to go; the time to train a
salesperson off the street to productivity was growing
unacceptable. As the company grew, performance
deteriorated and in 2005 new HP-51xx personal com-
puters were procured and a simple but effeective
Gnome desktop was built based on CentOS 4. Perfor-
mance was excellent and updates or the deployment
of new applications were handled by CFEngine.

OpenOffice proved to be less than usable and in
2007 we deployed Windows XP with Samba homes, a
volume license for Microsoft Office and OpenLDAP
as directory server.22 In essence, this was a very robust
setup and Nitrobit Policy Extensions23 allowed me to
manage these machines with Microsoft Group Policy
Objects, which are actually quite good. Zarafa24 with
Outlook plugins handled mail and calendar services
for a few years to general satisfaction.25.

In 2010 I finished building a proof-of-concept net-
install of Windows 7 but the nice and shiny alu-
minum Intel 12′′ iMacs were a very attractive alter-
native.

5.1.1. Why Apple. We’re a UNIX company. To
confront our guests with Windows desktops at the
reception desk is not what we had in mind. Almost

22. I had no intention to be locked in by Active Directory.
23. Nitrobit Policy Extensions, http://www.nitrobit.com
24. Zarafa, http://www.zarafa.com
25. Zarafa is a very good tool for UNIX or Linux users who

require Outlook-compatibility; the only reason I stopped using
Zarafa was that I did not need the MS Outlook plugins any more
and switched to Courier for IMAP and OSX Server for CalDav.

191

all senior staff were using MacBooks to their great
satisfaction, and I believed that Snow Leopard was
about good enough for corporate use.

The iMacs look good, are silent, have excellent
displays and comfortable keyboards, and require just
one power outlet.

Operating a contracting business has its advantages;
in 2010 I commissioned a colleague who had been
Apple-trained earlier in his career to build 2 MacMini
with Snow Leopard Sever and FireWire failover while
I built an AFP home directory server on FreeBSD
8 with ZFS and took care of OpenLDAP and the
like, taking pains to avoid vendor lock-in as much as
possible; I had already established that OSX Server
wasn’t good for much except iCal, software updates
and a certain amount of desktop management.

Migrating the users was quite simple. Only a few
essential attributes were added to the user account
in LDAP by generating a few LDIFs: an objectClass:
apple-user and a few atributes of this class (authAuthor-
ity, apple-generateduid, apple-user-homeDirectory and
apple-user-homeurl).

In addition, a few mappings were made in Direc-
tory Utility and incorporated in the disk image.26

A dscl /LDAPv3/ldap1.snow.nl -read
/Users/zkonijn shows a very minimal entry which
preserves compatibility with UNIX (and Windows):

dsAttrTypeNative:apple-user-homeDirectory:\
<home_dir><url>smb://server/zkonijn\
</url><path></path></home_dir>
dsAttrTypeNative:authAuthority: ;basic;
dsAttrTypeNative:givenName: Zus
dsAttrTypeNative:mail: zkonijn@snow.nl
dsAttrTypeNative:maildrop: zus.konijn
dsAttrTypeNative:objectClass: inetOrgPerson \

posixAccount shadowAccount \
sambaSamAccount CourierMailAlias \
apple-user SnowPerson top

dsAttrTypeNative:sambaAcctFlags: [UX]
dsAttrTypeNative:sambaPrimaryGroupSID: 513
dsAttrTypeNative:sambaSID: \

S-1-5-21-3227326526-2509306901-whatever
dsAttrTypeNative:sn: Konijn
dsAttrTypeNative:SnowCanonicalName: \

zus.konijn@snow.nl
AppleMetaNodeLocation: /LDAPv3/ldap0.snow.nl
AppleMetaRecordName: cn=Zus \

Konijn,ou=techniek,ou=intern,ou=people, \
dc=snow,dc=nl

26. Adding mappings by injecting a template.plist is not allowed
in Lion and higher. Relevant information is stored under /Li-
brary/Preferences/OpenDirectory/Configurations/LDAPv3, one
plist per directory server.

GeneratedUID: \
3ef6f677-2c85-4e38-8efd-438a30d67d53

HomeDirectory:
<home_dir><url>smb://server/zkonijn\

</url><path></path></home_dir>
NFSHomeDirectory: /home/zkonijn
Password: ********
PrimaryGroupID: 1159
RealName:
Zus Konijn

RecordName: zkonijn
RecordType: dsRecTypeStandard:Users
UniqueID: 11234
UserShell: /bin/bash

The deployment of Snow Leopard was a hugely
successful enterprise; staff loved the iMacs and most
got used to the UI in a remarkably short time with
few complaints and no serious issues.

As a side note: at the outset it was intended
to provide salespersons with an iPad and
keyboard for mail, web and so on and an
iPhone for voice, while deploying one iMac
for two salespersons. For various reasons,
this turned out to be less successful than
expected.

5.2. Upgrade Path

Immediately after deployment I began to make
plans for the future as Apple’s life cycle management
policy is quite clear.

Lion was a no-go; upon first installation I was
annoyed by the Directory Service login bug (any
password would do) and by the amazing time it took
Apple to fix this issue. We never did deploy 10.7,
anticipating that Lion would quickly go wherever
Vista went.

Mountain Lion was better and eventually 10.8.1
was deployed. Mountain Lion server, on the other
hand, was, to put it mildly, verminous and crash-
prone, and I eventually gave up on this software
altogether.

OSX server’s fail-over mode was removed in 10.7
which affected availability and increased the urgency
of further investigations into vendor-independence.

Eventually proxy management on the 10.6 calendar
server slowly disintegrated all by itself, resulting in

192

lots of tickets (for which, by the way, a few genera-
tions of interns have built an excellent system based
on OTRS27, including a CMDB.

SOGo28 replaced Calendar Service. It has some
minor issues but runs off PostgreSQL in a very
straightforward and perfectly manageable way, and
Reposado handles software updates.

This is a sequence of small steps but these actions
eliminated a number of more or less dysfunctional
infrastructure components, enhancing simplicity (less
SPOF) while improving flexibility (a change to a
CFEngine file results in changes all over the net-
work.29)

5.3. Images

DeployStudio30 is used to create an image of a
machine which looks the way I want it to, including
current versions of applications such as Microsoft
Office, printer drivers and the like. Clients are “net-
booted”, for which OSX Server is needed; ours runs
on an old Mac Pro.

We maintain one general-purpose image and a
special one for the finance department which contains
a fully configured Windows 7 virtual machine. Some
minor post-installation must be done manually.

5.4. Performance

AFP performance has always been atrocious. NFS
performance is very good but Spotlight will not
work. SMB is also quite good and Spotlight does
work, but there is another issue: caches in /var/folder-
s/xxxxx are used by Mail and AddressBook and many

27. OTRS, http://www.otrs.com
28. SOGo, http://www.sogo.nu
29. It is, of course, advised to have a DTAP setup with a

separate subnet for testing CFEngine in order to prevent accidents
happening. CFEngine clients will run off-line if the master fails
and/or until the time upon which they will attempt to go fail-
safe, if you have provided for such a configuration, but accidents
may happen and with the immense performance at low license
fees provided by VMWare’s Fusion tool, there is no excuse for not
dedicating a Mac to DTAP.

30. DeployStudio, http://www.deploystudio.com

other things. And many user processes do not really
quit when a user logs out.

This is a non-issue as long as a user sticks to her
own workstation, as is true for the great majority of
users.

I could probably have done something in RADIUS
to block double logins but the cache issue would not
have gone away.

Last August I decided to create local home directo-
ries for non-roaming users and all complaints about
performance have gone away. This also gives them
Time Machine (home folder only). There is a very
clear policy that business files must be stored on
business shares, and as these files are shared this policy
is generally adhered to.

5.5. Printing

We lease a couple of quite expensive Canon i5330
printers with Department ID, not for security but
for accounting (color pages are expensive). This is
fine, but Microsoft Office and Adobe whatever have
a print icon, and printing by clicking on this icon
results in stuck jobs as no department ID is passed
on. Out of the box, “Regular users” are not allowed to
remove queued jobs even if member of lpadmin and
I therefore have CFEngine distribute a customized
cupsd.conf.

5.6. Managed Preferences

Apple, as a consumer-oriented enterprise, do not
offer a decent tool to manage clients. The 10.7 Profile
Manager was so crash-prone that I stopped using
it. Workgroup Manager allows the administration of
certain aspects of a client but is not very convincing
either. It at least allowed me to “grey out” certain
icons in System Preferences, set screen saver defaults
and some other minor stuff – but even that can be
done from the command line:
defaults write com.apple.systempreferences \

HiddenPreferencePanes -array-add \
com.apple.preferences.Bluetooth

Deleting part of the array is currently not sup-

193

ported, however, so the entire HiddenPreferen-
cePanes object must be deleted and reassembled mi-
nus the item which you wished to unhide. This isn’t
very convenient.

There are ways of storing MCX settings (machine
and user preferences) in OpenLDAP31. The problem
here is that such items are Base64-encoded.

However, most settings are stored in plists, and
plists are XML or a binary format which can be trans-
lated into XML with plutil (or ports/converters/p5-
plutil on FreeBSD). And XML files are easily edited.
To this end, I experimented with grabbing all pref-
erences as stored in /Library/Managed Prefences on
a running client with a logged-in user, and caused
the login script to modify certain settings them upon
login.32

As distributed profiles shall obviously the way to
go in future, I have no intention to spent too much
time on this. Profiles are just XML files which can
be edited (though, because they are three-liners, a pass
through xmllint is needed), stored in a repository and
deployed in a number of ways. When we eventually
deploy Mavericks this will probably be the way to
manage preferences.

The 10.9 Profile Manager is less crash-prone than
before, it just needs to be restarted often. If you de-
ploy a “Settings for Everyone” basic profile manually,
do not forget to create a separate profile for admin
without restrictions.

5.7. CFEngine

All desktops are subject to management by
CFEngine 3. On a master machine I do a “port
mpkg cfengine3” which brings in dependencies such
als TokyoCabinet etc. and builds a metapackage. Dis-
tribution follows using Apple’s not entirely useless
Remote Desktop tool; if necessary, a shell script
handles postinstall. The first run of cf-agent installs
the supporting launchd plists.

31. http://www.siriusopensource.com/articles/
osx-and-openldap-taming-leopard,i.a.

32. There is a LoginHook in com.apple.loginwindow. Its use has
been deprecated since 10.4 but it still works, is convenient and
is intrinsically insecure. It is easy to write a launchd script which
causes the same effects; this is described in the next section.

#!/bin/ksh
export PATH=$PATH:/opt/local/sbin
sudo cf-agent --bootstrap --policy-server \

cfengine.snow.nl
cd /opt/local/var/lib/cfengine
sudo ln -s /opt/local/sbin/cf-* bin
sudo cf-agent --bootstrap --policy-server \

cfengine.snow.nl
sleep 1
sudo cf-agent -K
sudo killall cf-execd
sudo launchctl load \

/Library/LaunchDaemons/nl.snow.*.plist
sudo launchctl list | grep snow

The line
sudo cf-agent --bootstrap --policy-server \

cfengine.snow.nl

acquaints the client with the server and involves
a key exchange (which is reversible on the server
side). I next run cf-agent, which pulls a number of
configuration files off the server including a plist for
launching cf-execd in the canonical way and starts cf-
execd, which is not what I want but has been marked
as a “must have” process in CFEngine. This process is
subsecquently replaced with a cf-execd instance started
through launchctl.

5.7.1. Actions on the client side. Rules are processed
if a class match is found. The simplest class is “any”,
but that is too simplistic.

On the Macs, rules are processed if the built-in class
’darwin’ is matched. Upon a match, certain actions
are carried out: files such as cupsd.conf, profiles, login
scripts are copied if they have changed on the master;
files may be edited, permissions are verified and
corrected if necessary and so on. If a built-in (“hard”)
class provides insufficient granularity, you may define
your own, e.g.:

vars:

"sysctl_cores" string => \
execresult("/usr/sbin//sysctl -n \
machdep.cpu.core_count", "noshell");

classes:

"slowmac" expression => \
strcmp("$(sysctl_cores)", "2");

"imac" and => { regcmp("imac.*", \
"$(sys.uqhost)") };

reports:

slowmac::

"$(sys.uqhost) is an old mac";

194

imac::

"This is $(sys.uqhost)";

which will output

R: imac14 is an old mac

R: This is imac14

There is no space to discuss CFEngine in detail
and a few very simple and perhaps slightly contrived
examples should suffice.

#

Id left out

#

bundle common macs {

classes:

"imacs" expression => "darwin";

}

bundle agent imac_files {

vars:

"master_location" string => \
"/var/cfengine/masterfiles/osx";

"policyhost" string => "cfengine.snow.nl";

files:

imacs::

"/etc/profile"

comment => "ensure that shell history is \
timestamped",

edit_line => AppendIfNoLine(’export \
HISTTIMEFORMAT="%F %T> "’);

imacs::

"/Library/LaunchDaemons/nl.snow.cfexecd.plist",

comment => "LaunchDaemon to start cf-execd \
at boot",

perms => mog("u+rw,og+r","root","wheel"),

copy_from =>

secure_cp("$(master_location)/nl.snow.\

cfexecd.plist", "$(policyhost)");

}

This is the plist:

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST \
1.0//EN" \
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Label</key>

<string>nl.snow.cfexecd</string>

<key>ProgramArguments</key>

<array>

<string>/opt/local/sbin/cf-execd</string>

<string>-F</string>

</array>

<key>KeepAlive</key>

<true/>

</dict>

</plist>

Files which are routinely copied (but only if nec-
essary) include:

admindotprofile

auto_master

cupsd.conf

loginscript.sh

nl.snow.cfexecd.plist

nl.snow.cffailsafe.plist

nl.snow.failsafe.plist

nl.snow.swupdate.plist

nl.snow.loginscript.plist

sudoers

swupdate.sh

sysctl.conf

There is some trickery in the schdule for upates
nl.snow.swupdate.plist, One would not want all 35
iMacs to assault the update server at 17:00 every
Monday. CFEngine allows me to randomize day and
minute, however. This plist is only copied from the
server if it does not yet exist, and is only edited if
there is a zero to replace.

vars:

....

"run_minute" int => randomint(1,59);

"run_day" int => randomint(1,5);

....

"/Library/LaunchDaemons/nl.snow.swupdate.plist"

comment => "minute after 17:00 to start \
swupdate",

edit_line => my_replace(\
"<integer>0</integer>",

"<integer>$(run_minute)</integer>");

"/Library/LaunchDaemons/nl.snow.swupdate.plist"

comment => "day of week to run swupdate",

edit_line => \
my_replace("<integer>1</integer>",

"<integer>$(run_day)</integer>");

A copy action in CFEngine can be made dependent
upon another action; it is, for instance, pointless
to try and copy an authorized_keys unless the
.ssh directory exists.

195

imacs::

"/Users/admin/.ssh/."

handle => "make_ssh_dir",

perms => mog("u+rwx,og-rwx","admin","staff"),

create => "true";

imacs::

"/Users/admin/.ssh/authorized_keys"

depends_on => { "make_ssh_dir" },

perms => mog("u+rw,og-rwx","admin","staff"),

copy_from =>

secure_cp("$(master_keys)/authorized_keys", \
\

"$(policyhost)");

As a final example, I don’t want desktops to try to
use wireless accidentally or otherwise, as there are at
least two wireless devices per user already:

commands:

‘‘/usr/sbin/networksetup -setairportpower \
airport off"

comment => "disable wireless interfaces";

By default, such commands are executed without
lauching a shell. Networksetup, by the way, looks like
a very versatile tool on first appearance, but a subset
of its flags is not supported on 10.8 and above. In a
similar way, items may be added to the dock using,
for instance, dockutil33.

A rather important file is the login script in /us-
r/local/libexec but that is too long to include in this
paper (and quite impossible to display in two-column
format). It causes certain settings to be forced to the
desired default if the user has changed them or I
have changed my mind. For instance, mail in HTML
format is deprecated:

...

no HMTL

defaults write com.apple.mail \

SendFormat Plain ||

error "$LINENO: cannot write default"

The login script is started by a script in /Li-
brary/LaunchAgents, which means that it is run by
the user who has logged in and not by root.

33. dockutil, https://raw.github.com/kcrawford/dockutil/
master/scripts/dockutil

5.8. Inventory of Authorized and Unautho-
rized Software

This is SANS-20 Critical Control #2.

Creating software inventories and enforcing com-
pliance with a baseline is essentially impossible on
OSX.

Spotlight helps a bit:
mdfind ’kMDItemKind == "Application"’

which at least finds applications in non-standard
locations.
mdls /Applications/\$.app -name \

kMDItemVersion}

will show a version string, and
mdfind ’kMDItemKind == "Unix Executable File"’

should deliver all binaries and executable shell
scripts in non-App directories. Unfortunately you
will get much more than you asked for:
-rwxr-xr-x (...) \

/Library/Printers/Canon/UFR2/Profile \
/Device/iPR C7010VP+

which is an XML document in DOS format but
for weird reasons has the x bits, and there are many
more files like this.

I’m in two minds on this issue. I appreciate the
value of a proper inventory but it requires a lot of
work and the results are of questionable value on
ephemeral machines such as desktops.34

5.9. Secure Configurations for Hardware and
Software on Mobile Devices, Laptops, Work-
stations and Servers

This is SANS-20 Critical Control #3, and part of
it is slightly easier to implement on workstations and
servers than on mobile devices. I exclude unmanaged
notebooks and PDA as I have no control over these

34. Do not waste time on desktops; re-install or replace if unable
to diagnose or repair the issue within 15 minutes!

196

things and therefore deny all access to internal net-
works to such devices.

/usr/libexec/ApplicationFirewall/socketfilterfw pro-
vides an interface to the standard firewall which is
very basic indeed. Selecting ’block all’ disallows ARD
connections which is inconvenient.

FreeBSD’s pf replaced ipfw in OSX in 10.7 but is
not actually used, as Scott Lowe35 wrote some time
ago.
sudo pfctl -s rules

No ALTQ support in kernel
ALTQ related functions disabled
scrub-anchor "com.apple/*" all fragment \

reassemble
anchor "com.apple/*" all

A colleague is looking into this matter as we may
wish more tightly to lock down the notebooks which
we plan to issue, as alluded to in section 6.

6. BYOD

Bring your own device is is a new and creepy
phenomenon, and one which most sysadmins have
trouble dealing with. It works like this: Alice obtains
a MacBook Air but has no idea how it works.
Alice asks her neighbour Bob, who naturally knows
nothing about your company’s policy, to help her
with the setup. Bob installs some games, Adobe Flash
Player, Transmission and other undesirable software.
In order to be able to help Alice, Bob creates an
admin account for himself. Alice arrives at the office
and wants to access the Sales directory and also
entrust her collection of pirated movies to the home
server. It would therefore be foolish to give Alice’s
MacBook an IP-address in the office LAN.

Now, how to deal with Alice. The simple answer is
don’t. However, IT people are unpopular enough as
things are, and users often do stuff which generates
money to pay our salaries, so we should be kind.
A more politically correct approach would be “OK,
but. . . ”. BYOD is here to stay so we ought to
shape appropriate policies and provide a modicum of
support. As such machines have been installed and
configured in an unapproved manner, support can

35. Scott Lowe, http://blog.scottlowe.org/2013/05/15/
using-pf-on-os-x-mountain-lion/

only be “best effort” and access to sensitive resources
should be denied. Management co-operation is essen-
tial; staff should be made to sign a code of conduct.
As in all matters concerning security, awareness is
paramount.

Providing locked-down notebooks is not necessar-
ily a good alternative from the point of view of
support staff; they will be expected to help people
connect to their home WLAN, print on home print-
ers and so on. However, we will roll out 13′′ MBA
for our sales staff and provide Thunderbolt displays
for power and network.

6.1. The Cloud

6.1.1. Google. The European Union has rather clear
laws in regard of the storage of privacy-sensitive data.
Google declined to give me an assurance that our data
would only be stored on servers inside the European
Union and that did not really surprise me in view of
Google’s storage infrastructure. And as Google is a
US corporation the Patriot Act applies to our data.
So Google Mail and Google Apps are out.

The same applies to iCloud, DropBox and the like.
However, there is no way we can (or would wish to)
prevent people from obtaining Apple IDs and storing
stuff in iCloud.

6.1.2. Your own cloud. It may be wise to provide
an alternative for dropbox-type services so as to give
users what they want while staying on top of things
– it is not like I’m short of disk space. For the past
six months I’ve run OwnCloud36 on my own web
server without major disappointments, but I will not
deploy this service at Snow without a code review.
AeroFS37 may fit your bill.

7. Lessons Learned

• Try to be vendor-independent. I have chosen not
to run Active Directory or Open Directory and
I am still in business;

36. OwnCloud, http://owncloud.org
37. AeroFS, https://aerofs.com

197

• do not be too confident that Apple will fix bugs
and features OSX within a time window that
suits your needs. Their core business is selling
high-margin PDA’s and notebooks. OSX is a
sideline and they’ve evidently accepted that the
corporate desktop market belongs to Microsoft.
• use CFEngine or similar (and store the configu-

ration files in SVN, GIT or similar);
• verify backups and encrypt offsite backups;
• have a disaster recovery scenario and do excercise

this at regular intervals;
• leverage existing well-understood tools.

8. Resources

Apart from the resources provided in the footnotes,
the Mac Developer Library38 contains some rather
good stuff if you are patient and dig down deeply.39

9. About the author

I’ve been with Snow since 1997 and my employee
number is 4. I have been a FreeBSD user since 1994. I
made my acquaintance with OSX in 2001 at the first
EuroBSDCon in Brighton (U.K.).

38. Mac Developer Library, https://developer.apple.com/
library/mac/navigation

39. This site still contains with mind-boggling titles such as
“Deploying OS X Server for High Performance Computing”.

198

199

200

201

202

203

204

